My name is Subhashish Chattopadhyay. I have been teaching for IIT-JEE, Various International Exams (such as IMO [International Mathematics Olympiad], IPhO [International Physics Olympiad], IChO [International Chemistry Olympiad]), IGCSE (IB), CBSE, I.Sc, Indian State Board exams such as WB-Board, Karnataka PU-II etc since 1989. As I write this book in 2016, it is my 25th year of teaching. I was a Visiting Professor to BARC Mankhurd, Chembur, Mumbai, Homi Bhabha Centre for Science Education (HBCSE) Physics Olympics camp BARC Campus.
I am Life Member of ...
- IAPT (Indian Association of Physics Teachers)
- IPA (Indian Physics Association)
- AMTI (Association of Mathematics Teachers of India)
- National Human Rights Association
- Men’s Rights Movement (India and International)
- MGTOW Movement (India and International)

And also of

IACT (Indian Association of Chemistry Teachers)

The selection for National Camp (for Official Science Olympiads - Physics, Chemistry, Biology, Astronomy) happens in the following steps...

1) NSEP (National Standard Exam in Physics) and NSEC (National Standard Exam in Chemistry) held around 24th November. Approx 35,000 students appear for these exams every year. The exam fees is Rs 100 each. Since 1998 the IIT JEE toppers have been topping these exams and they get to know their rank / performance ahead of others.

2) INPhO (Indian National Physics Olympiad) and INChO (Indian National Chemistry Olympiad). Around 300 students in each subject are allowed to take these exams. Students coming from outside cities are paid fair from the Govt of India.

3) The Top 35 students of each subject are invited at HBCSE (Homi Bhabha Center for Science Education) Mankhurd, near Chembur, BARC, Mumbai. After a 2-3 weeks camp the top 5 are selected to represent India. The flight tickets and many other expenses are taken care by Govt of India.
Since last 50 years there has been no dearth of “Good Books”. Those who are interested in studies have been always doing well. This e-Book does not intend to replace any standard text book. These topics are very old and already standardized.

There are 3 kinds of Text Books

- The thin Books - Good students who want more details are not happy with these. Average students who need more examples are not happy with these. Most students who want to “Cram” quickly and pass somehow find the thin books “good” as they have to read less !

- The Thick Books - Most students do not like these, as they want to read as less as possible. Average students are “busy” with many other things and have no time to read all these.

- The Average sized Books - Good students do not get all details in any one book. Most bad students do not want to read books of “this much thickness“ also !

We know there can be no shoe that’s fits in all.

Printed books are not e-Books! Can’t be downloaded and kept in hard-disc for reading “later”

So if you read this book later, you will get all kinds of examples in a single place. This becomes a very good “Reference Material”. I sincerely wish that all find this “very useful”.

Students who do not practice lots of problems, do not do well. The rules of “doing well” had never changed Will never change !
After 2016 CBSE Mathematics exam, lots of students complained that the paper was tough!

CBSE assures remedial measures for tricky and tough Class XII Math paper

After several students claimed that the Central Board of Secondary Education (CBSE) Class XII board Mathematics examination paper was ‘tricky’ and tough, the board has issued a clarification on remedial measures which are likely to be taken before evaluation.

The CBSE says that feedback received from various stakeholders like students, subject teachers and examiners will be put before the committee of subject experts.
In 2015 also the same complain was there by many students.
In March 2016, students of Karnataka PU-II also complained the same, regarding standard 12 (PU-II Mathematics Exam). Even though the Math Paper was identical to previous year, most students had not even solved the 2015 Question Paper.

These complaints are not new. In fact since last 40 years, (since my childhood), I always see this; every year the same setback, same complain!

In this e-Book I am trying to solve this problem. Those students who practice can learn.

No one can help those who are not studying, or practicing.
A very polite request:

I wish these e-Books are read only by Boys and Men. Girls and Women, better read something else; learn from somewhere else.
Preface

We all know that in the species “Homo Sapiens “, males are bigger than females. The reasons are explained in standard 10, or 11 (high school) Biology texts. This shapes or size, influences all of our culture. Before we recall / understand the reasons once again, let us see some random examples of the influence

Random - 1

If there is a Road rage, then who all fight ? (generally ?). Imagine two cars driven by adult drivers. Each car has a woman of similar age as that of the Man. The cars “touch “ or “some issue happens”. Who all comes out and fights ? Who all are most probable to drive the cars?

(Men are eager to fight, eager to rule, eager for war. Men want to drive. Men want to win)

Random - 2

Heavy metal music artists are all Men. Metallica, Black Sabbath, Motley Crue, Megadeth, Motorhead, AC/DC, Deep Purple, Slayer, Guns & Roses, Led Zeppelin, Aerosmith the list can be in thousands. All these are grown-up Boys, known as Men.

(Men strive for perfection. Men are eager to excel. Men work hard. Men want to win.)

Random - 3

Apart from Marie Curie, only one more woman got Nobel Prize in Physics. (Maria Goeppert Mayer - 1963). So, ... almost all are men.

Random - 4

The best Tabla Players are all Men.

Random - 5

History is all about, which Kings ruled. Kings, their men, and Soldiers went for wars. History is all about wars, fights, and killings by men.

Boys start fighting from school days. Girls do not fight like this.
Random - 6

The highest award in Mathematics, the “Fields Medal” is around since decades. Till date only one woman could get that. (Maryam Mirzakhani - 2014). So, ... almost all are men.

Random - 7

Actor is a gender neutral word. Could the movie like “Top Gun” be made with Female actors? The best pilots, astronauts, Fighters are all Men.
In my childhood had seen a movie named “The Tower in Inferno”. In the movie when the tall tower is in fire, women were being saved first, as only one lift was working....

Many decades later another movie is made. A box office hit. “The Titanic”. In this also As the ship is sinking women are being saved. Men are disposable. Men may get their turn later...
Movies are not training programs. Movies do not teach people what to do, or not to do. Movies only reflect the prevalent culture. Men are disposable, is the culture in the society. Knowingly, unknowingly, the culture is depicted in Movies, Theaters, Stories, Poems, Rituals, etc. I or you can’t write a story, or make a movie in which after a minor car accident the Male passengers keep seating in the back seat, while the both the women drivers come out of the car and start fighting very bitterly on the road. There has been no story in this world, or no movie made, where after an accident or calamity, Men are being helped for safety first, and women are told to wait.

Random - 9

Artists generally follow the prevalent culture of the Society. In paintings, sculptures, stories, poems, movies, cartoon, Caricatures, knowingly / unknowingly, “the prevalent Reality” is depicted. The opposite will not go well with people. If deliberately “the opposite” is shown then it may only become a special art, considered as a special mockery.

Random - 10

Men go to “girl / woman’s house” to marry / win, and bring her to his home. That is a sort of winning her. When a boy gets a “Girl-Friend “, generally he and his friends consider that as an achievement. The boy who “got / won “ a girl-friend feels proud. His male friends feel, jealous, competitive and envious. Millions of stories have been written on these themes. Lakhs of movies show this. Boys / Men go for “bike race “, or say “ Car Race “, where the winner “gets “ the most beautiful girl of the college.

(Men want to excel. Men are eager to fight, eager to rule, eager for war. Men want to drive. Men want to win.)

Prithviraj Chauhan ‘ went ` to “pickup “ or “ abduct “ or “ win “ or “ bring “ his love. There was a Hindi movie (hit) song ... “ Pasand ho jaye, to ghar se utha laye “. It is not other way round. Girls do not go to Boy’s house or man’s house to marry. Nor the girls go in a gang to “pick-up “ the boy / man and bring him to their home / place / den.
Rich people; often are very hard working. Successful business men, establish their business (empire), amass lot of wealth, with lot of difficulty. Lots of sacrifice, lots of hard work, gets into this. Rich people's wives had no contribution in this wealth creation. Women are smart, and successful upto the extent to choose the right/rich man to marry. So generally what happens in case of Divorces? Search the net on “most costly divorces” and you will know. The women; (who had no contribution at all, in setting up the business / empire), often gets in Billions, or several Millions in divorce settlements.

Ted Danson & Casey Coates -- $30 million

Ted Danson's claim to fame is undoubtedly his decade-long stint as Sam Malone on NBC's celebrated sitcom Cheers. While he did other TV shows and movies, he will always be known as the bartender of that place where everybody knows your name. He met his future first bride, Casey, a designer, in 1976 while doing Erhard Seminars Training.

Ten years his senior, she suffered a paralyzing stroke while giving birth to their first child in 1979. In order to nurse her back to health, Danson took a break from acting for six months. But after two children and 15 years of marriage, the infatuation fell to pieces. Danson had started seeing Whoopi Goldberg while filming the comedy, Made in America and this precipitated the 1992 divorce. Casey got $30 million for her trouble.

See http://skmclasses.kinja.com/save-the-male-1761788732

It was Boys and Men, who brought the girls / women home. The Laws are biased, completely favoring women. The men are paying for their own mistakes.

See https://zookeepersblog.wordpress.com/biased-laws/

(Man brings the Woman home. When she leaves, takes away her share of big fortune!)

A standardized test of Intelligence will never be possible. It never happened before, nor ever will happen in future; where the IQ test results will be acceptable by all. In the net there are thousands of charts which show that the intelligence scores of girls / women are lesser. Debates of Trillion words, does not improve performance of Girls.
I am not wasting a single second debating or discussing with anyone, on this. I am simply accepting ALL the results. IQ is only one of the variables which is required for success in life. Thousands of books have been written on “Networking Skills“, EQ (Emotional Quotient), Drive, Dedication, Focus, “Tenacity towards the end goal“ … etc. In each criteria, and in all together, women (in general) do far worse than men. Bangalore is known as “….. capital of India “. [Fill in the blanks]. The blanks are generally filled as “Software Capital“, “IT Capital“, “Startup Capital“, etc. I am member in several startup eco-systems/groups. I have attended hundreds of meetings, regarding “technology startups“, or “idea startups“. These meetings have very few women. Starting up new companies are all “Men’s Game“ / “Men’s business“. Only in Divorce settlements women will take their goodies, due to Biased laws. There is no dedication, towards wealth creation, by women.

Random - 13

Many men, as fathers, very unfortunately treat their daughters as “Princess“. Every “non-performing“ woman / wife was “princess daughter“ of some loving father. Pampering the girls, in name of “equal opportunity“, or “women empowerment“, have led to nothing.

There can be thousands of more such random examples, where “Bigger Shape / size“ of males have influenced our culture, our Society. Let us recall the reasons, that we already learned in standard 10 - 11, Biology text Books. In humans, women have a long gestation period, and also spends many years (almost a decade) to grow, nourish, and stabilize the child. (Million years of habit) Due to survival instinct Males want to inseminate. Boys and Men fight for the “facility (of womb + care)“ the girl / woman may provide. Bigger size for males, has a winning advantage. Whoever wins, gets the “woman / facility“. The male who is of “Bigger Size“, has an advantage to win…… Leading to Natural selection over millions of years. In general “Bigger Males“; the “fighting instinct“ in men; have led to wars,
and solving tough problems (Mathematics, Physics, Technology, startups of new businesses, Wealth creation, Unreasonable attempts to make things [such as planes], Hard work)

So let us see the IIT-JEE results of girls. Statistics of several years show that there are around 17, (or less than 20) girls in top 1000 ranks, at all India level. Some people will yet not understand the performance, till it is said that ... year after year we have around 980 boys in top 1000 ranks. Generally we see only 4 to 5 girls in top 500. In last 50 years not once any girl topped in IIT-JEE advanced. Forget about Single digit ranks, double digit ranks by girls have been extremely rare. It is all about “good boys “, “hard working “, “focused “, “Bel-esprit “ boys.

In 2015, Only 2.6% of total candidates who qualified are girls (upto around 12,000 rank), while 20% of the Boys, amongst all candidates qualified. The Total number of students who appeared for the exam were around 1.4 million for IIT-JEE main. Subsequently 1.2 lakh (around 120 thousands) appeared for IIT-JEE advanced.

IIT-JEE results and analysis, of many years is given at https://zookeepersblog.wordpress.com/iit-jee-iseet-main-and-advanced-results/.

In Bangalore it is rare to see a girl with rank better than 1000 in IIT-JEE advanced. We hardly see 6-7 boys with rank better than 1000. Hardly 2-3 boys get a rank better than 500.

See http://skmclasses.weebly.com/everybody-knows-so-you-should-also-know.html

HURT FEMINISM BY DOING NOTHING

- Don’t help women
- Don’t fix things for women
- Don’t support women’s issues
- Don’t come to women’s defense
- Don’t speak for women
- Don’t value women’s feelings
- Don’t portray women as victims
- Don’t protect women

Without white knights feminism would end today

How Society prioritize Men

- Rich women
- Women
- Rich Men
- Girls
- Boys
- Animals
- Prisoners
- Men
- Poor Men

- They can get away with murder.
- They get all the rights with no responsibility and shelters for Homeless women.
- They get bail outs and short prison sentence.
- They get educational benefits but no violence against kids Act.
- They have some support but don’t have any education that fits boys.
- They have animal rights and PETA.
- They get conjugal visits and 3 squares and a roof.
- Paid slaves.
- Nothing.

Who pays the most Taxes? This is why MGTOW exist.

#MGTOW
Spoon Feeding Series - Area & Volume Problems

The student must be very good at Graphs of Various kinds of functions; to do well in this topic. The graphs will not be given in the Questions. The student has to draw the graphs quickly, largely to scale; get the intersection points, and then plan for a piece-wise strategy to integrate and find the area.

Let us review the various graphs

\(y = mx \) will be a straight line passing through the origin. Positive \(m \) will make the line move upwards as we move in positive \(x \) i.e. towards right.

\[\text{plot } y = 2x \]

This is graph of \(y = 2x \) Don’t get foxed by the angle being almost \(45^\circ \) The scales in \(y \)-axis and \(x \)-axis are not same.

If we compare two graphs then it becomes more clear.

In this figure also scales of \(x \)-axis and \(y \)-axis are not same. But \(y = 6x \) has to be steeper than \(y = 2x \)
This is $y = 3x$ and $y = -5x$ graphs. For $m = -5$ the line moves down.

For $y = mx + c$ the c becomes the intercept in the y axis.

So $y = 3x - 4$ will look like

If c is a positive number then the intercept in y-axis will be on upper (positive) side.

Graphs of $y = 2x + 3$ and $y = 4x + 5$ will be
Again scales in x-axis and y-axis are different. But point made. See how the graphs pass through 3 and 5 respectively.

- Nature of Curves, Types of Graphs, Shapes are explained / discussed at

- Now let us see graphs of Quadratic functions

Graph of \(y = x^2 \) will be
In contrast, the graph of \(y = -3x^2 \) will be downwards.

Graph of \(y = \frac{1}{3}x^2 \) will be flatter compared to \(y = x^2 \).
Similarly graph of \(y = 10x^2 \) will be narrow and steeper compared to \(y = x^2 \)

So see comparisons in a single image
Similar things happen with power functions as well. Below we see fraction raised to power x

Let us see the graph of $y = 2^x$
The graph of \(y = 3^x \) will be steeper and is understood easily by comparison.

Now let us compare integer to the power \(x \) and fraction to the power \(x \).
What about comparing $y = 3^x$ and $y = -3^x$

Spoon Feeding comparison of $y = 2^x$ and $y = -2^x$
Graph of $y = 4x^2 + 3$ will be 3 units above x-axis. So will pass through (0, 3) The parabola will look similar to $y = x^2$

\[y = 4x^2 + 3 \]

Let us learn more with graphs of $y = -5x^2 + 6$ and $y = 6x^2 - 7$

\[y = -5x^2 + 6 \]
\[y = 6x^2 - 7 \]

Don’t quickly assume that the graphs are intersecting on x axis. The roots are very close.

5x^2 = 6 => $x = \pm \sqrt{(6/5)} = \pm 1.095$

While 6x^2 = 7 => $x = \pm \sqrt{(7/6)} = \pm 1.0801$
Concept of Shifting of graphs

The graph of \(y = 3(x - 2)^2 \) will be same as \(y = 3x^2 \) while shifted by 2 units towards right

Similarly graph of \(y = 4(x + 3)^2 \) will be shifted by 3 units on left compared to \(y = 4x^2 \) which is through the origin

\[
\begin{align*}
\text{plot} & \quad y = 3(x - 2)^2 \\
& \quad y = 3x^2 \\
\text{plot} & \quad y = 4(x + 3)^2 \\
& \quad y = 4x^2
\end{align*}
\]
IIT-JEE 2005 Shifting a Parabola and then finding the area is discussed / explained at

https://archive.org/details/AreaDefiniteIntegralIITJEE2005ShiftingParabolasLeftOrRight

-

IIT-JEE 1994 Problem and Solution explained with Positive and Negative Area in between two parabolas at

https://archive.org/details/AreaDefiniteIntegralIITJEE1994Between2ParabolasPositiveAndNegative

-

How to choose Integration limits?

Positive Negative Area explained, Discussion on Limits, all explained at

https://archive.org/details/AreaDefiniteIntegralPositiveAndNegativeAreaHowToChooseIntegrationLimits

-

In the above image see how the upper graph is shifted up by 1 due to +1
In the image below the graph is shifted down by -1

\[y = x^2 - 1 \]

The parabola that passes through (1,0) and (7,0) will be \((x - 1)(x - 7)\)

In simple words the Quadratic expression that has roots 1 and 7 is a parabola through 1 and 7

So graph of \(y = (x - 1)(x - 7) = x^2 - 8x + 7 \) is
If a Quadratic expression has roots -3, 5 then it will be a parabola passing through -3 and 5.

So graph of \(y = (x + 3)(x - 5) = x^2 - 2x - 15 \) is

If the Discriminant \(D < 0 \) i.e. \(b^2 < 4ac \) then the whole parabola is above \(x \)-axis signifying imaginary roots. As the parabola does not intersect the \(x \)-axis at all. For \(a > 0 \)

If \(a \) is negative then the parabola will be downwards.

So graph of \(y = (x - 3)^2 + 5 \) will be

Meaning minima will be at \(x = 3 \) so \(x^2 \) graph shifted right by 3 and added 5 so moved up by 5 units.
So we can easily guess the graph of \(y = - (x + 5)^2 - 7 \)

It will be shifted left by 5 units. So maxima will be at \(x = -5 \) and 7 units below x axis.

The parabola is downwards because coeff of \(x^2 \) is -ve.

Don't use the idea of shift blindly! The graph of \(y = e^{x-4} \) is not shifted by 4 units that of \(y = e^x \).

This is because \(e^{(x-4)} = e^x/e^4 \) means just divided by a value.
Concept of Reflections

Guess the graph of $y = -e^x$

What about graph of $y = e^{-x}$ and $y = -e^{-x}$
Graph of $y = x \ln x$ (Ignore the Imaginary part graph)

Graph of $y = x \ln |x|$
How will the graph of $y = \frac{\ln x}{x}$ look like? (Ignore the Imaginary part)

Definite Integral of $x \ln x$ and $\frac{(\ln x)}{x}$ discussed and explained at

https://archive.org/details/AreaDefiniteIntegralIntegralOfXLnXAndLnXByX

What about the graph of $y = \frac{(\ln |x|)}{x}$?

IIT-JEE 1990 problem and Solution on Area, Tricky graph of $x \ln x$ is explained / Discussed at

https://archive.org/details/AreaDefiniteIntegralIITJEE1990TrickyGraphsOfXLnXAndLnXByX

CBSE Standard 12 Math Survival Guide - Area & Volume Problems by Prof. Subhashish Chattopadhyay
SKMClasses Bangalore Useful for IIT-JEE, I.Sc. PU-II, Boards, IGCSE IB AP-Mathematics and other exams
IIT JEE 1984, 1992 Problems and Solutions as being discussed in the class. Explains various kinds of graphs at https://archive.org/details/AreaDefiniteIntegralIITJEE19841992TypesOfGraphs

Graph of Floor x, i.e. greatest integer function x, $y = \lfloor x \rfloor$

Recall $\lfloor -3.2 \rfloor$ is -4 the integer less than -3.2 while $\lfloor -3.99 \rfloor$ is also -4

What about graph of $y = -\lfloor x \rfloor$ (i.e. negative of Floor function)

Best way to learn is to "think" and try to plot it yourself, in rough.
There are many theorems related to “Floor or Greatest Integer functions”. Two theorems related to Floor function are discussed while solving a complicated Limit problem

https://archive.org/details/VeryImportantTwoFloorTheoremsGreatestIntegerFunctionExplanationAndExample

Fraction x can be defined as $x - \lfloor x \rfloor$ so graph of $y = \{ x \}$ will be

$$\{ 2.3 \} = 0.3, \{ 2.4 \} = 0.4, \{ 4.5 \} = 0.5, \{ 4.6 \} = 0.6$$

There are infinite number of discontinuities.
Graph of $y = \ln(x)$
Note: Log of negative number is imaginary as discussed in the complex number chapter.

Graph of $y = e^x$

Graph of $y = \ln|x|$ and $y = -\ln|x|$

CBSE Standard 12 Math Survival Guide - Area & Volume Problems by Prof. Subhashish Chattopadhyay
SKMClasses Bangalore Useful for IIT-JEE, I.Sc. PU-II, Boards, IGCSE IB AP-Mathematics and other exams
Graph of $y = \sin x$ vs $y = \sin^{-1} x$

$y = \sin(x)$
$y = \sin^{-1}(x)$

Not sure if the above graph communicates well. Imaginary part of the graph to be ignored / avoided as of this discussion.

$y = \sin^{-1} x$ means $x = \sin y$ The graph of which is drawn much easier.
I am sure this is much better

Graph of \(y = \cos x \) vs \(y = \cos^{-1} x \)
Graph of $y = \sec x$ vs $y = \sec^{-1} x$

I guess we should see these graphs individually as these graphs are not commonly given in other textbooks.
Actually $\cos x$ can be drawn in the gap to fit-in well

Graph of $y = \csc x$

$Y = \sin x$ has been fit into this
Graph of \(y = \tan x \)

Graph of \(y = \tan^{-1} x \)
Let us compare these a few more times, so that we can remember
Graph of $y = \cot x$
Graph of $y = \cot^{-1} x$

CBSE Standard 12 Math Survival Guide - Area & Volume Problems by Prof. Subhashish Chattopadhyay
SKMClasses Bangalore Useful for IIT-JEE, I.Sc. PU-II, Boards, IGCSE IB AP-Mathematics and other exams

CBSE Standard 12 Math Survival Guide - Area & Volume Problems by Prof. Subhashish Chattopadhyay
SKMClasses Bangalore Useful for IIT-JEE, I.Sc. PU-II, Boards, IGCSE IB AP-Mathematics and other exams
An introduction to Periodic functions, Decision to Multiply or Divide is explained at

https://archive.org/details/PeriodicFunctionsAnIntroductionOfPeriodMultiplyOrDivide

Graphs of modulus functions

[Schematic diagram showing the graphs of $y = |\sin x^\circ|$ and $y = \sin |x^\circ|$ in the interval $-360^\circ < x < 360^\circ$.]
Valentine's Day: \(y = |x| \pm \sqrt{(4 - x^2)} \)
Now let us see Horizontal Parabolas

Graph of $y^2 = 4x$ is of the form $y^2 = 4a \cdot x$
Graphs of Cubic Equations \((y = x^3)\) and higher powers of \(x\)

Graph of \(y = x^3\) is

A good student can learn a lot by thinking how the graph of negative of the same function will look.
How will $y = (x + 6)(x - 3)(x - 7)$ look like? [$x = -6$, 3 and 7 will be roots. So the graph will pass through $(-6, 0)$, $(3,0)$ and $(7,0)$]
If coeff of x cube is negative then the graph will be downwards for increasing x. Also repeat roots can be there. Try to guess the graph of \(y = (5 - x)(2 - x)^2 \)

This will have roots at \(x = 5 \) and repeat roots (Two roots) at \(x = 2 \) so will touch x axis at \(x = 2 \)

Because of distorted scale this graph is not a good one. The graph is correct but student must be mature to understand the distorted scale effects.

The graph below is a better one from a different plotter.
The graph of \(y = x^5 \) or say \(y = x^{11} \) will look very similar.
The difference is highlighted if the graphs are drawn together. All these graphs pass through \((1, 1)\) and \((-1, -1)\). While higher powered graph is flatter in between -1 to 1 and steeper after 1 or before -1.
Graph of \(y = x^2 \ (x + 3 \) (x - 3) = x^2 \ (x^2 - 9) \)

\[
\text{plot } y = x^2 (x^2 - 9)
\]

\[X = 0 \text{ will be repeat root due to } x^2. \text{ Also } x = 3 \text{ and } x = -3 \text{ will be the roots}\]

Graph of \(y = -x^2 \ (x^2 - 9) + 6 \)

\[
\text{plot } y = 6 - x^2 (x^2 - 9)
\]
Now let us see graphs of Circles.

Graph of $x^2 + y^2 = R^2$ will have the center at $(0,0)$ and radius will be R.

So graph of $x^2 + y^2 = 36$ is

Graph of $(x - 3)^2 + (y - 4)^2 = 25$ is

Center is at $(3, 4)$.
Some special graphs

\[y = \frac{x}{x^2 + 1} \]

The graph becomes asymptotic to the x-axis as we move towards right or left.

The same will happen for \[y = \frac{x^2}{x^2 + 1} \] though very slowly.

\[\lim_{x \to \pm\infty} \frac{x^2}{1 + x^2} = 1 \]
In this case the graph is asymptotic to 1 \(\left(\frac{x^2}{x^2 + 1} \right) \)

Can you guess what will happen in case of \(y = \frac{x^2}{x^3 + 2} \)? Did you notice the discontinuity around negative cube root of 2
Can you guess what will happen in case of negative cube root of 4?

\[y = \frac{x}{x^3 + 4} \] Understand the discontinuity around the negative cube root of 4.

Find all asymptotes and sketch the function.

\[f(x) = \frac{x^0 + 5}{x^2 + 3x + 1} \]

\[x^2 + 3x + 1 = 0 \]
\[x = \frac{-3 \pm \sqrt{3}}{2} \]

(2 vertical asymptotes)

\[y = \frac{(x^2/x^3) + (5/x^3)}{(x^3/x^3) + (3x/x^3) + (1/x^3)} = \text{undefined (no horizontal asymptotes)} \]

\[x - 3 + (8x + 8)/(x^2 + 3x + 1) \]

\[x^2 + 3x + 1 / x^2 + 0x + 5, x^2 + 3x^2 + x \]
\[-3x^2 - x + 5 \]
\[-3x^2 - 9x - 3 \]
\[8x + 8 \]

\[8x/x^2 + 8/x^2 \]
Find all asymptotes and sketch the function

\[y = x - 3 + \frac{x^2}{x^2} + 3x/x^2 + 1/x^2 \]
\[= x - 3 + 0 \]
\[= x - 3 \text{ (one oblique asymptote)} \]

\[g(x) = \frac{x^2}{x - 3} \]
\[x - 3 = 0 \]
\[x = 3 \text{ (one vertical asymptote)} \]
\[y = \frac{x^2}{x^2} = \text{undefined (no horizontal asymptotes)} \]
\[x/x^2 - 3/x^2 \]
\[x + ((3x)/(x - 3)) \]
\[x - 3 / x^2 + 0x + 0 \]
\[x^2 - 3x \]
\[\frac{3x}{x} \]
\[y = x + \frac{3x}{x - 3} = x + 3 \text{ (one oblique asymptote)} \]
Find all asymptotes and sketch the function

\[
y = \frac{x^3 - 4x^2 - 49x - 90}{2x^2 + 12x + 18}
\]

\[
2x^2 + 12x + 18 = 2(x^2 + 6x + 9) = 0
\]

\[
x = -3 \text{ (one vertical asymptote)}
\]

\[
y = \frac{x^3}{x^3} - \frac{4x^2}{x^3} - \frac{49x}{x^3} - \frac{90}{x^3} = \text{undefined (no horizontal asymptotes)}
\]

\[
0.5x - 5 + \frac{(2x)}{(2x^2 + 12x + 18)}
\]

\[
2x^2 + 12x + 18 \div x^3 - 4x^2 - 49x - 90
\]

\[
x^3 + 6x^2 + 9x
\]

\[
-10x^2 - 58x - 90
\]

\[
-10x^2 - 60x - 90
\]

\[
2x
\]

\[
2x^2
\]
Find all asymptotes and sketch the function

\[
h(x) = \frac{4x^3 - 6}{9x^5 + 7x^2}
\]

\[
9x^5 + 7x^2 = x^2(9x^3 + 7) = 0
\]

\[
x = (-7/9)^{1/3} \quad \text{or} \quad x = 0 \quad \text{(two vertical asymptotes)}
\]

\[
4x^5/x^5 - 6/x^5
\]

\[
y = \frac{4}{9} \quad \text{(one horizontal asymptote)}
\]

There are no oblique asymptotes, as the degree of the numerator is not one greater than the degree of the denominator.
Find all asymptotes and sketch the function

\[y = \frac{x^4 - 3x^3 + 5x^2 - 7x + 9}{x^5 - x^4 - x^3 + 3x^2 - 5x + 18} \]

First, reduce the equation to \(y = 1/(x + 2) \)

\[x + 2 = 0 \]
\[x = -2 \) (one vertical asymptote)

\[\frac{1}{x} \]
\[y = \frac{1}{x + 2/x} \) (one horizontal asymptote)

There are no oblique asymptotes, as the degree of the numerator is not one greater than the degree of the denominator.
Graphs of \(y = x + 1/x \) and \(y = x - 1/x \)
Graph of

\[y = \frac{1}{2} \left(e^{x^2} + e^{-x^2} \right) \]

So graph of

\[y = \frac{1}{e^{x^2} + e^{-x^2}} \]
Let us start with Area Problems

We know that the area below a curve can be obtained better if we take thin rectangles.

If the width of the rectangle becomes dx then Sum of the rectangles will give us the Area exactly.
If area enclosed between two curves is needed; then the upper curve function minus the lower curve function needs to be integrated, between the two intersection points as limits.
We generally get questions with line intersecting a parabola kind ...

In the graphs or curves given below find the enclosed region

We can find the intersection points being (0,0) and (1,1)
Find the shaded area between the functions $y = x^2$ and $y = 2x - x^2$

\[
\int_0^1 \left(2x - x^2\right) - x^2 \, dx = \int_0^1 2x - 2x^2 \, dx \\
= \left[x^2 - \frac{2}{3}x^3 \right]_0^1 \\
= \left(1 - \frac{2}{3} \right) - 0 \\
= \frac{1}{3}
\]
Find the Area bounded by x axis and the parabola \(y = 4x - x^2 \)

\[
\begin{align*}
\text{Area} &= \int_{0}^{4} \left(4x - x^2\right) \, dx \\
&= \left[\frac{4x^2}{2} - \frac{x^3}{3} \right]_{0}^{4} \\
&= \left(\frac{4 \times 16}{2} - \frac{64}{3} \right) - (0 - 0) \\
&= \frac{64}{3} \quad \text{Square Units}
\end{align*}
\]

Find the shaded area between the curve \(f(x) = x^2 - 6x + 10 \) , the lines \(x = 2 \) and \(x = 5 \) and the x-axis

\[
\begin{align*}
\text{Shaded Area} &= \int_{2}^{5} (x^2 - 6x + 10) \, dx
\end{align*}
\]
The shaded area is 6 square units.

Find the Area bounded by y axis and \(x = 4 - y^2 \implies y^2 = 4 - x \)

$$
\begin{align*}
\int_{y^2=4-x}^{x=4} y \, dx \\
&= \left[\frac{1}{3} y^3 \right]_{y^2=4-x}^{x=4} \\
&= \left[\frac{1}{3} (4 - x)^{3/2} \right]_{0}^{4} \\
&= \left[\frac{1}{3} (4) - \frac{1}{3} (0) \right] \\
&= \frac{32}{3} \text{ square units}
\end{align*}
$$

Find the area between \(y = 4x + 16 \) and \(y = 2x^3 + 10 \)

Solving these two given equations we get the intersection points as \(x = -1 \) and \(x = 3 \) (Quadratic equation \(2x^3 + 10 = 4x + 16 \implies 2x^3 - 4x - 6 = 0 \)
\[x^2 - 2x - 3 = 0 \quad \text{Factorize and you get } x = -1 \text{ and } x = 3 \]

So required area is

\[
\int_{-1}^{3} \left(4x + 16 - \left(2x^2 + 10\right) \right) dx \\
= \int_{-1}^{3} -2x^2 + 4x + 6 \, dx \\
= \left[-\frac{2}{3} x^3 + 2x^2 + 6x \right]_{-1}^{3} \\
= \frac{64}{3}
\]

In some cases part of the area may be +ve and part may be negative depending on which curve is above and which is below.

For detailed discussions / explanations see (IIT-JEE 1982 Problems and Solutions)

https://archive.org/details/AreaDefiniteIntegralDetailedDiscussionOnPositiveAndNegativeArea

Find the Area bounded by \(x = y^2 \) and \(y = x^2 \)

We can easily solve to see that the graphs intersect at (1, 1)
Thus the Area is

\[\int_{0}^{1} (y_1 - y_2) \, dx \\
= \int_{0}^{1} \left(\sqrt{x} - x^2 \right) \, dx \\
= \left[\frac{2}{3} \sqrt{x} - \frac{x^3}{3} \right]_0^1 \\
= \left(\frac{2}{3} \cdot 1 \sqrt{1} - \frac{(1)^3}{3} \right) - (0) \\
= \frac{2}{3} - \frac{1}{3} \\
= \frac{1}{3} \text{ square units} \]

Determine the area of the region bounded by \(y = 2x^2 + 10 \), \(y = 4x + 16 \), \(x = -2 \), and \(x = 5 \)

The regions in the graph needs to be plotted
So Area is

\[
A = \int_{-2}^{1} 2x^2 + 10 - (4x + 16) \, dx + \int_{1}^{3} 4x + 16 - (2x^2 + 10) \, dx + \int_{3}^{5} 2x^2 + 10 - (4x + 16) \, dx \\
= \left[\frac{2}{3} x^3 - 2x^2 - 6x \right]_{-2}^{1} + \left[-\frac{2}{3} x^3 + 2x^2 + 6x \right]_{1}^{3} + \left[\frac{2}{3} x^3 - 2x^2 - 6x \right]_{3}^{5} \\
= \frac{14}{3} + \frac{64}{3} + \frac{64}{3} \\
= \frac{142}{3}
\]

Example: find the total area between the curve \(y = x^3 \) and the x-axis between \(x = -2 \) and \(x = 2 \).

![Graph showing the area between the curve \(y = x^3 \) and the x-axis from \(x = -2 \) to \(x = 2 \).]

If we simply integrated \(x^3 \) between \(-2\) and \(2\), we would get:

\[
\left[\frac{x^4}{4} \right]_{-2}^{2} - \frac{4}{4} = 0
\]

So instead, we have to split the graph up and do two separate integrals.

\[
\int_{0}^{2} x^3 \, dx = \left[\frac{x^4}{4} \right]_{0}^{2} = 16/4 - 0 = 4 \\
\int_{2}^{0} x^3 \, dx = \left[\frac{x^4}{4} \right]_{2}^{0} = 0 - 16/4 = -4 \quad \text{(so area is 4).}
\]

We then add these two up to get: \(8 \text{ units}^2 \)
Find the area bounded by $4y^2 = 9x$ and $3x^2 = 16y$

Thus the Area is

$$\int_0^4 \left(\frac{3}{2} \sqrt{\frac{3}{2}} - \frac{3}{16} x^2\right) dx$$

$$= \left[\frac{3}{2} \sqrt{\frac{3}{2}} x - \frac{3}{16} \cdot \frac{x^3}{3} \right]_0^4$$

$$= \left(4 \sqrt{3} - \frac{4^3}{16}\right)$$

$$= 8 - 4$$
Find the Area between y axis, x = 2, \(y^2 = 6x + 4 \)

\[
\begin{align*}
\text{plot} & \quad y^2 = 6x + 4 \\
x &= 2
\end{align*}
\]

\[
\begin{align*}
&= \int_{2}^{3} \sqrt{6x + 4} \, dx \\
&= \left[\frac{2}{3} (6x + 4)^{\frac{3}{2}} \right]_{2}^{3} \\
&= \frac{1}{9} \left[\left(12 + 4 \right)^{\frac{3}{2}} - \left(0 + 4 \right)^{\frac{3}{2}} \right] \\
&= \frac{1}{9} \left(16\sqrt{16} - 4\sqrt{4} \right) \\
&= \frac{1}{9} (64 - 8) \\
&= \frac{56}{9} \text{ square units}
\end{align*}
\]
Find the shaded area:

Evaluate:

\[
\int_{x=0}^{x=1} (x^3 - 4x) \, dx + \int_{x=-1}^{x=0} (x^3 - 4x) \, dx = \left[\frac{x^4}{4} - 2x^2 \right]_0^1 + \left[\frac{x^4}{4} - 2x^2 \right]_{-1}^0 \\
= (0) - \left(\frac{16}{4} - 8 \right) + \left(\frac{16}{4} - 8 \right) - (0) \\
= 4 + 4 \\
= 8
\]

Find the area bounded by x-axis, y = 3 and y = 4 - x^2

\[
\int_{x=-2}^{x=2} (4 - x^2) \, dx \\
= 2 \int_{x=0}^{x=2} (4 - x^2) \, dx \\
= 2 \left[4x - \frac{x^3}{3} \right]_0^2 \\
= 2 \left[\left(8 - \frac{8}{3} \right) - (0) \right] \\
= \frac{32}{3} \text{ square units}
\]
We need to know graphs of ellipse and problems related to those

\[\frac{x^2}{4} + \frac{y^2}{9} = 1 \]

The area is 4 times area of one quadrant. So we integrate from 0 to 2 for

\[y = 3\sqrt{1 - \frac{x^2}{4}} \]

Thus total area is \(6\pi\) Square units
Determine the area of the region enclosed by \(x = \frac{1}{2} y^2 - 3 \) and \(y = x - 1 \)

The line and the parabola intersect at \(y = -2 \Rightarrow x = y + 1 = -1 \) so \((-1, -2)\)

and \(y = 4 \Rightarrow x = y + 1 = 5 \) so \((5, 4)\)

the function becomes \(y = \pm \sqrt{2x+6} \)

We need to integrate piecewise as shown
So the required Area

\[A = \int_{-3}^{1} \sqrt{2x+6} - (\sqrt{2x+6}) \, dx + \int_{-1}^{3} \sqrt{2x+6} - (x-1) \, dx \]

\[= \int_{-3}^{1} 2\sqrt{2x+6} \, dx + \int_{-1}^{3} \sqrt{2x+6} \, dx - x + 1 \, dx \]

\[= \int_{-3}^{1} 2\sqrt{2x+6} \, dx + \int_{-1}^{3} \sqrt{2x+6} \, dx + \int_{-1}^{5} -x + 1 \, dx \]

\[= \left[\frac{2}{3}x^{\frac{3}{2}} \right]_{-3}^{1} + \left[\frac{1}{3}x^{\frac{3}{2}} \right]_{-1}^{3} + \left(\frac{1}{2}x^2 + x \right) \bigg|_{-1}^{5} \]

\[= 18 \text{ Square units} \]

But if we integrated from y direction as dy then piecewise integration was not needed.

\[= \int_{-2}^{4} (y+1) - \left(\frac{1}{2}y^2 - 3 \right) \, dy \]

\[= \int_{-2}^{4} -\frac{1}{2}y^2 + y + 4 \, dy \]

\[= \left(-\frac{1}{6}y^3 + \frac{1}{2}y^2 + 4y \right) \bigg|_{-2}^{4} \]

\[= 18 \text{ Square units} \]
Determine the area of the region bounded by $x = -y^2 + 10$ and $x = (y-2)^2$.

The intersection points are $y = -1$ and $y = 3$

So the area is found by integrating with respect to dy

$$\int_{-1}^{3} -y^2 + 10 - (y-2)^2 \, dy$$

$$= \int_{-1}^{3} -2y^2 + 4y + 6 \, dy$$

$$= \left[-\frac{2}{3}y^3 + 2y^2 + 6y \right]_{-1}^{3} = \frac{64}{3}$$

For the region shown
We need to integrate in terms of \(dy \) within limits 0 to 1 for \((12y^2 - 12y^3 - 2y^2 + 2y) \).

For the region shown

\[
\text{the Area with be found as 2 (integration of } x^2 + 2x^4) \text{ dx}
\]

For the region shown

\[
\text{The area need to be found in two parts.}
\]

\[
\text{A1) Integrate -2 to 0 w.r.t dx for } 2x^3 - x^2 - 5x + x^2 - 3x
\]

\[
\text{A2) Integrate 0 to 2 w.r.t dx for } -x^2 + 3x - 2x^3 + x^2 + 5x
\]
Spoon Feed

Find the Area bounded by \(x = 2 \) and \(y^2 = 8x \)

\[
\text{Area} = \frac{32}{3} \text{ Square units}
\]

Find the area bounded by in general \(x = a \) and \(y^2 = 4ax \)
Required Area =

\[= 2 \int_{0}^{\frac{a}{\sqrt{2}}} \sqrt{a - x} \, dx \]

\[= 2 \int_{0}^{\frac{a}{\sqrt{2}}} \sqrt{a \left(1 - \frac{x}{a}\right)} \, dx \]

\[= 2 \sqrt{a} \int_{0}^{\frac{a}{\sqrt{2}}} \sqrt{1 - \frac{x}{a}} \, dx \]

\[= 2 \sqrt{a} \left[-\frac{1}{3} a \sqrt{1 - \frac{x}{a}} \right]_{0}^{\frac{a}{\sqrt{2}}} \]

\[= 2 \sqrt{a} \left(-\frac{1}{3} a \sqrt{1 - \frac{a}{a \sqrt{2}}} \right) \]

So \(\frac{8}{3} a^2 \) Square Units

Find the Total area bounded by the ellipse \(4x^2 + 9y^2 = 36 \)

The Total area will be 4 times area of one Quadrant

\[= 4 \int_{0}^{\frac{a}{3}} \sqrt{9 - x^2} \, dx \]
The area between the parabola $y^2 = x$ and the line $y = x$ can be found using definite integrals.

The area is given by:

\[
A = \int_{a}^{b} (f(x) - g(x)) \, dx
\]

For $y^2 = x$, we have $f(x) = \sqrt{x}$, and for $y = x$, we have $g(x) = x$.

The bounds of integration are determined by the intersection points of the two curves. Setting $y^2 = x$ equals x:

\[
y^2 = x \Rightarrow x = x
\]

This gives us $x = 0$ as the lower bound and $x = 1$ as the upper bound.

So the area is:

\[
A = \int_{0}^{1} (\sqrt{x} - x) \, dx
\]

This integral evaluates to:

\[
A = \left[\frac{2}{3} x^{\frac{3}{2}} - \frac{x^2}{2} \right]_{0}^{1}
\]

\[
= \frac{2}{3} \left(1^{\frac{3}{2}} - 0^{\frac{3}{2}}\right) - \frac{1^2}{2} - 0
\]

\[
= \frac{2}{3} \cdot 1 - \frac{1}{2}
\]

\[
= \frac{1}{6}
\]

So, the total area is $\frac{1}{6}$ square units.
Spoon Feeding for Area bounded by \(y^2 = 4x \) and \(y = 2x \)

We see the intersection point is \((1,2)\). So integrate from 0 to 1 for \(2 \sqrt{x} - 2x \) \(dx\)

Find the area bound by the ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) and the line \(\frac{x}{a} + \frac{y}{b} = 1 \)

Assuming \(a > b \)
Find the area enclosed between x-axis and the curve $y = 2\sqrt{1-x^2}$

The graph is

\[
\begin{align*}
\text{plot} & \quad y = 2\sqrt{1-x^2} \\
\end{align*}
\]
Required area only in the positive quadrant, from 0 to 1 will be

\[= \int_0^1 y \, dx \]
\[= \int_0^1 2\sqrt{1-x^2} \, dx \]
\[= 2 \left[\frac{x}{2} \sqrt{1-x^2} + \frac{1}{2} \sin^{-1}(x) \right]_0^1 \]
\[= 2 \left[\left(\frac{1}{2} \sqrt{1-1} + \frac{1}{2} \sin^{-1}(1) \right) - \{0 + 0\} \right] \]
\[= 2 \left[0 + \frac{1}{2} \frac{\pi}{2} \right] \]
\[= \frac{\pi}{2} \text{ square units} \]

Find the area of a circle (of radius a) by finding the area of one Quadrant

The equation of the circle will be \(x^2 + y^2 = a^2 \) so \(y = \sqrt{a^2 - x^2} \)
Area of the first Quadrant will be

\[= \text{Region } \text{OARBO} \]
\[= \int_{0}^{a} y \, dx \]
\[= \int_{0}^{a} \sqrt{a^2 - x^2} \, dx \]
\[= \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_{0}^{a} \]
\[= \left[\left(\frac{a}{2} \sqrt{a^2 - a^2} + \frac{a^2}{2} \sin^{-1} (1) \right) - \left(0 \right) \right] \]
\[= \left[0 + \frac{a^2}{2} \cdot \frac{\pi}{2} \right] \]
\[= \frac{\pi}{4} a^2 \text{ square units} \]

So Total area of the circle will be 4 times this. => \(\pi a^2 \)

Find the area between \(2y = 5x + 7 \), \(x = 2 \), and \(x = 8 \)
Find the area of the triangle by integration. The vertices being A (2,1), B (3,4), C (5,2)

Equation of the line AB will be
Equation of the line BC will be

\[y - 4 = \left(\frac{2 - 4}{5 - 3} \right)(x - 3) \]
\[= \frac{-2}{2}(x - 3) \]
\[y - 4 = -x + 3 \]
\[y = -x + 7 \] \hspace{1cm} (2)

Equation of the line AC is

\[y - 1 = \left(\frac{2 - 1}{5 - 2} \right)(x - 2) \]
\[y - 1 = \frac{1}{3}(x - 2) \]
\[y = \frac{1}{3}x - \frac{2}{3} + 1 \]
\[y = \frac{1}{3}x + \frac{1}{3} \] \hspace{1cm} (3)
Shaded area $\triangle ABC$ is the required area.

$$ar\ (\triangle ABC) = ar\ (\triangle ABD) + ar\ (\triangle DBC)$$

For $ar\ (\triangle ABD)$: we slice the region into approximation rectangle with width $= \Delta x$

and length $(y_1 - y_3)$ area of rectangle $= (y_1 - y_3)\Delta x$

This approximation rectangle slides from $x = 2$ to $x = 3$

$$ar\ (\triangle ABD) = \int_{2}^{3} (y_1 - y_3)\ dx$$

$$= \int_{2}^{3} \left(3x - 5 - \frac{1}{3}x + \frac{1}{3}\right)\ dx$$

$$= \frac{3}{2} \left[3x - 5 - \frac{1}{3}x - \frac{1}{3}\right]_{2}^{3}$$

$$= \frac{3}{2} \left[8x - \frac{16}{3}\right]_{2}^{3}$$

$$= \frac{3}{2} \left[\left(\frac{9}{2} - 6\right) - \left(2 - 4\right)\right]$$

$$= \frac{3}{2} \left[\frac{3}{2} + 2\right]$$
\[\frac{8}{3} \times \frac{1}{2} \]

\[\text{ar} \{ \triangle ABD \} = \frac{4}{3} \text{ sq. unit} \]

For \(\text{ar} \{ \triangle BDC \} \): we slice the region into rectangle with width \(= \Delta x \) and length \((y_2 - y_3) \). Area of rectangle = \((y_2 - y_3) \Delta x \)

The approximation rectangle slides from \(x = 3 \) to \(x = 5 \).

\[
\text{Area} \{ \triangle BDC \} = \int_{3}^{5} (y_2 - y_3) \, dx \\
= \int_{3}^{5} \left[-x + 7 - \left(\frac{1}{3} x + \frac{1}{3} \right) \right] \, dx \\
= \int_{3}^{5} \left[-x + 7 - \frac{1}{3} x - \frac{1}{3} \right] \, dx \\
= \int_{3}^{5} \left[-\frac{4}{3} x + \frac{20}{3} \right] \, dx \\
= \left[-\frac{4x^2}{6} + \frac{20x}{3} \right]_{3}^{5}
\]
\[
\begin{align*}
&= - \left[\left(\frac{4(5)^2}{6} + \frac{20(5)}{3} \right) - \left(\frac{4(3)^2}{6} - \frac{20}{3} \right) \right] \\
&= - \left[\left(\frac{50}{3} - \frac{100}{3} \right) - (6 - 20) \right] \\
&= - \left[-\frac{50}{3} + 14 \right] \\
&= - \left[-\frac{8}{3} \right] \\
&= \frac{8}{3} \text{ sq. units}
\end{align*}
\]

So, \(\text{ar} \{ \triangle ABC \} = \text{ar} \{ \triangle ABD \} + \text{ar} \{ \triangle BDC \} \)

\[
= \frac{4}{3} + \frac{8}{3} = \frac{12}{3}
\]

\(\text{ar} \{ \triangle ABC \} = 4 \text{ sq. units} \)

Find the area bounded by \(y = 2x + 1 \) (line A), \(y = 3x + 1 \) (line B), \(y = 4 \) (line AC)
Find the Area bounded by $y^2 \leq 8x$, $x^2 + y^2 \leq 9$

Let us plot the graph
Find the area bound by the curves $x^2 + y^2 = 16$, and $y^2 = 6x$

The graph will be
Required area = Region $OBAO$
Required area = $2 \left(\text{region } ODAO + \text{region } DCAD \right) \quad \quad \quad \quad \{1\}$

Region $ODAO$ is divided into approximation rectangle with area $y_1 \Delta x$ and slides from $x = 0$ to $x = 2$. And region $DCAD$ is divided into approximation rectangle with area $y_2 \Delta x$ and slides from $x = 2$ and $x = 4$. So using equation $\{1\}$,

Required area = $2 \left\{ \int_{0}^{2} y_1 \, dx + \int_{2}^{4} y_2 \, dx \right\}$

$= 2 \left[\int_{0}^{2} \sqrt{6x} \, dx + \int_{2}^{4} \sqrt{16-x^2} \, dx \right]$

$= 2 \left[\left(\frac{2}{3} \cdot \frac{2}{3} \cdot \sqrt{6} \right)^2 + \left(\frac{1}{2} \left(\frac{1}{2} \cdot \sqrt{16-x^2} + \frac{16}{2} \cdot \sin^{-1} \frac{x}{4} \right) \right) \right]$

$= 2 \left[\left(\frac{2}{3} \cdot \frac{2}{3} \cdot \sqrt{6} \right)^2 + \left(\frac{4}{2} \cdot \sqrt{16-4} + \frac{16}{2} \cdot \sin^{-1} \frac{2}{4} \right) \right]$

$= 2 \left[\left(\frac{4}{3} \cdot \sqrt{12} \right) + \left(\frac{1}{2} + 4 \cdot \sin^{-1} (1) \right) \right]$

$= 2 \left[\frac{8 \sqrt{3}}{3} + \left(\frac{8 \pi}{6} \right) \right]$

$= 2 \left\{ \frac{8 \sqrt{3}}{3} + \frac{4 \pi}{3} \right\}$

Required area = $\frac{4}{3} \left\{ 4 \pi + \sqrt{3} \right\}$ sq.units
Find the area bounded by the circles $x^2 + y^2 = 4$, and $(x - 2)^2 + y^2 = 4$

Equation (1) is a circle with centre O at the origin and radius 2. Equation (2) is a circle with centre $C\,(2, 0)$ and radius 2. Solving equations (1) and (2), we have $(x - 2)^2 + y^2 = x^2 + y^2$
Or $x^2 - 4x + 4 + y^2 = x^2 + y^2$
Or $x = 1$ which gives $y = \pm \sqrt{3}$
Thus, the points of intersection of the given circles are $A\,(1, \sqrt{3})$ and $A'\,(1, -\sqrt{3})$

Required area of the enclosed region $OACAO$ between circle
$= 2\left[\text{area of the region } ODCAO\right]$
$= 2\left[\text{area of the region } ODAO + \text{area of the region } OCAO\right]$
$= 2\left[\int_0^1 y\,dx + \int_1^2 y\,dx\right]$
$= 2\left[\int_0^1 \sqrt{4 - (x - 2)^2}\,dx + \int_1^2 \sqrt{4 - x^2}\,dx\right]$
$= \left[\frac{1}{2} (x - 2) \sqrt{4 - (x - 2)^2} + \frac{1}{2} \times 4 \sin^{-1}\left(\frac{x - 2}{2}\right)\right]_0^1 + 2\left[\frac{1}{2} \times \sqrt{4 - x^2} + \frac{1}{2} \times 4 \sin^{-1}\left(\frac{x}{2}\right)\right]_1^2$
$= \left[(x - 2) \sqrt{4 - (x - 2)^2} + 4 \sin^{-1}\left(\frac{x - 2}{2}\right)\right]_0^1 + \left[\sqrt{4 - x^2} + 4 \sin^{-1}\left(\frac{x}{2}\right)\right]_1^2$
$= \left[-\sqrt{3} + 4 \sin^{-1}\left(\frac{-1}{2}\right)\right] - \left[4 \sin^{-1}\left(1 - \sqrt{3} - 4 \sin^{-1}\left(-\frac{1}{2}\right)\right)\right]$
$= \left[-\sqrt{3} - 4 \times \frac{\pi}{6} + 4 \times \frac{\pi}{2}\right] + \left[4 \times \frac{\pi}{2} - \sqrt{3} - 4 \times \frac{\pi}{6}\right]$
$= \left[-\sqrt{3} - \frac{2\pi}{3} + \frac{2\pi}{3}\right] + \left[2\pi - \sqrt{3} - \frac{2\pi}{3}\right]$
$= \frac{8\pi}{3} - 2\sqrt{3}$ square units
Find the area bound by $y^2 = x$ and $x + y = 2$

Equation (1) represents a parabola with vertex at origin and its axis as x-axis, equation (2) represents a line passing through $(2,0)$ and $(0,2)$. Points of intersection of line and parabola are $(1,1)$ and $(4,-2)$.

A rough sketch of curves is as below:-
Shaded region represents the required area. We slice it in rectangles of width Δy and length $=(x_1-x_2)\Delta y$.

Area of rectangle $=(x_1-x_2)\Delta y$.

This approximation rectangle slides from $y=-2$ to $y=1$, so

Required area $= \text{Region } AOB A$

$= \int_{-2}^{1} (x_1-x_2) \, dy$

$= \int_{-2}^{1} (2-y-y^2) \, dy$

$= [2y - \frac{y^2}{2} - \frac{y^3}{3}]_{-2}^{1}$

$= \left[\left(2 - \frac{1}{2} - \frac{1}{3} \right) - \left(-4 - 2 + \frac{8}{3} \right) \right]$

$= \left[\left(\frac{12 - 3 - 2}{6} \right) - \left(\frac{-12 - 6 + 8}{3} \right) \right]$

$= \frac{7}{6} + \frac{10}{3}$

Required area $= \frac{9}{2}$ sq.units

Find Area bound by $x=-2, x=3, x$-axis $(y=0)$, and $y=1+|x+1|$

The straight lines for the mod function will flip around $x=-1$
So, equation (1) is a straight line that passes through \((0,2)\) and \((-1,1)\). Equation (2) is a line passing through \((-1,1)\) and \((-2,2)\) and it is enclosed by line \(x = 2\) and \(x = 3\) which are lines parallel to \(y\)-axis and pass through \((2,0)\) and \((3,0)\) respectively \(y = 0\) is \(x\)-axis. So, a rough sketch of the curves is given as:

Shaded region represents the required area.
Integration of modulus function by splitting into parts is explained and discussed at

https://archive.org/details/IntegrationOfModulusFunctionWriteIntegralBySplittingPart3

So, required area = Region \(\text{ABECDFA} \)
Required area = \(\text{region ABEFA + region ECDFE} \) \(\cdots (1) \)

Region \(\text{ECDFE} \) is sliced into approximation rectangle with width \(\Delta x \) and length \(y_1 \).
Area of those approximation rectangle is \(y_1 \Delta x \) and these slides from \(x = -2 \) to \(x = -1 \).

Region \(\text{ABEFA} \) is sliced into approximation rectangle with width \(\Delta x \) and length \(y_2 \).
Area of those rectangle is \(y_2 \Delta x \) which slides from \(x = -1 \) to \(x = 3 \). So, using equation \((1) \),

\[
\text{Required area} = \int_{-2}^{-1} y_1 \, dx + \int_{-1}^{3} y_2 \, dx \\
= \int_{-2}^{-1} (x) \, dx + \int_{-1}^{3} (x + 2) \, dx \\
= \left[\frac{x^2}{2} \right]_{-2}^{-1} + \left[\frac{x^2}{2} + 2x \right]_{-1}^{3} \\
= \left[\frac{1}{2} - \frac{4}{2} \right] + \left[\frac{9}{2} + 6 - \frac{1}{2} - 2 \right] \\
= \frac{3}{2} + \left(\frac{21}{2} + \frac{3}{2} \right) \\
= \frac{27}{2}
\]

Required area = \(\frac{27}{2} \) sq.units

Integration of modulus function by splitting into parts is explained and discussed at

https://archive.org/details/IntegrationOfModulusFunctionWriteIntegralBySplittingPart3

Find the area bounded by $0 < x < 1$ for $y = |x - 5|$

The graph of the modulus function will flip around $x = 5$

$$\text{Required area} = \int_{0}^{1} y \, dx$$

$$= \int_{0}^{1} |x - 5| \, dx$$

$$= \int_{0}^{1} -(x - 5) \, dx$$

$$= \left[-\frac{x^2}{2} + 5x \right]_{0}^{1}$$

$$= \left[-\frac{1}{2} + 5 \right]$$

$$= \frac{9}{2} \text{ sq. units}$$

Therefore, the given integral represents the area bounded by the curves, $x = 0, y = 0$, $x = 1$ and $y = -(x - 5)$.

Graphs of Hyperbolas

<table>
<thead>
<tr>
<th></th>
<th>x-axis</th>
<th>y-axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation</td>
<td>(\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1)</td>
<td>(\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1)</td>
</tr>
<tr>
<td>Center</td>
<td>(C(h, k))</td>
<td>(C(h, k))</td>
</tr>
<tr>
<td>Semi – transverse axis</td>
<td>(a)</td>
<td>(a)</td>
</tr>
<tr>
<td>Semi – conjugate axis</td>
<td>(b)</td>
<td>(b)</td>
</tr>
<tr>
<td>Vertices</td>
<td>(V(h \pm a, k))</td>
<td>(V(h, k \pm a))</td>
</tr>
<tr>
<td>Foci</td>
<td>(F(h \pm ae, k))</td>
<td>(F(h, k \pm ae))</td>
</tr>
<tr>
<td>Directrices</td>
<td>(x = h \pm a/e)</td>
<td>(y = k \pm a/e)</td>
</tr>
<tr>
<td>Asymptotes</td>
<td>(b x \pm a y - (b h \pm a k) = 0)</td>
<td>(a x \pm b y - (a h \pm b k) = 0)</td>
</tr>
<tr>
<td>Focal chord length</td>
<td>(2b^2/a)</td>
<td>(2b^2/a)</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>(e = \sqrt{\frac{a^2+b^2}{a}} > 1)</td>
<td>(e = \sqrt{\frac{a^2+b^2}{a}} > 1)</td>
</tr>
</tbody>
</table>

\[\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1\] \hspace{1cm} \[\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1\]

For both horizontal and vertical hyperbolas, slopes of asymptotes = \(\pm \frac{b}{a}\)
Rectangular Hyperbolas (where the eccentricity = $\sqrt{2}$) (\(x^2 - y^2 = 1\)) and (\(xy = 1\)) type
Let us solve a problem with Hyperbola

Find the area bounded by x-axis, x = 3, x = 4, and xy - 3x - 2y - 10 = 0

\[y \left(x - 2 \right) = 3x + 10 \]

\[y = \frac{3x + 10}{x - 2} \]

A rough sketch of the curves is given below:
Shaded region is required region.
It is sliced in rectangle with width $= \Delta x$ and length $= y$

Area of rectangle $= y \Delta x$

This approximation rectangle slide from $x = 3$ to $x = 4$. So,

Required area $= \text{Region } AB\ CDA$

$$= \int_3^4 y \, dx$$

$$= \int_3^4 \left(\frac{3x + 10}{x - 2} \right) \, dx$$

$$= \int_3^4 \left(3 + \frac{16}{x - 2} \right) \, dx$$

$$= \left[3x \right]^4_3 + 16 \left[\log|x - 2| \right]^4_3$$

$$= (12 - 9) + 16 (\log 2 - \log 1)$$

Required area $= \left[3 + 16 \log 2 \right]$ sq. units

Find the area bounded by $y^2 = 4x$ and $x^2 = 4y$
\[A = \int_{0}^{4} (y_1 - y_2) \, dx \\
= \int_{0}^{4} \left(2\sqrt{x} - \frac{x^2}{4} \right) \, dx \\
= \left[\frac{2}{3} x \sqrt{x} - \frac{x^3}{12} \right]_{0}^{4} \\
= \left[\left(\frac{4}{3} \cdot 4 \sqrt{4} - \frac{64}{12} \right) - \{0\} \right] \\
A = \frac{32}{3} - \frac{16}{3} \\
A = \frac{16}{3} \text{ sq.units}\]
Do the same problem with abstract values. Find the Area enclosed in between \(y^2 = 4ax \) and \(x^2 = 4by \).

Equation (1) represents a parabola with vertex \((0,0)\) and axis as \(x\)-axis, equation (2) represents a parabola with vertex \((0,0)\) and axis as \(y\)-axis, points of intersection of parabolas are \((0,0)\) and \((4a \frac{1}{3}, b \frac{2}{3}), (4a \frac{2}{3}, b \frac{1}{3})\).

A rough sketch is given as:-
The shaded region is required area and it is sliced into rectangles of width \(\Delta x \) and length \((y_1 - y_2) \).

Area of rectangle = \((y_1 - y_2)\Delta x \).

This approximation rectangle slides from \(x = 0 \) to \(x = 4a^\frac{1}{3} b^\frac{2}{3} \), so

Required area = Region \(OQAPO \)

\[
= \int_{0}^{4a^\frac{1}{3} b^\frac{2}{3}} (y_1 - y_2) \, dx \\
= \int_{0}^{4a^\frac{1}{3} b^\frac{2}{3}} (2\sqrt{a} \sqrt[3]{x} - \frac{x^2}{4b}) \, dx \\
= \left[2\sqrt{a} \cdot \frac{2}{3}x^{\frac{2}{3}} - \frac{x^3}{12b} \right]_{0}^{4a^\frac{1}{3} b^\frac{2}{3}} \\
= \frac{32\sqrt{a}}{3} \cdot a^\frac{1}{3} b^\frac{2}{3} - a^\frac{1}{3} b^\frac{2}{3} \cdot \frac{64ab^2}{12b} \\
= \frac{32}{3} ab - \frac{16}{3} ab
\]

\(A = \frac{16}{3} ab \) sq.units.
Find the area enclosed in between \(x^2 + y^2 = 4 \) and \(x = \sqrt{3} \ y \).
Required area = Region OABO

\[A = \text{Region } OCBO + \text{Region } AB CA \]
\[= \int_{0}^{\sqrt{3}} y_1 dx + \int_{\sqrt{3}}^{2} y_2 dx \]
\[= \int_{0}^{\sqrt{3}} \frac{x}{\sqrt{3}} dx + \int_{\sqrt{3}}^{2} \sqrt{4-x^2} dx \]
\[= \left[\frac{x^2}{2 \sqrt{3}} \right]_0^{\sqrt{3}} + \left[\frac{x}{2} \sqrt{4-x^2} + \frac{4}{2} \sin^{-1}\left(\frac{x}{2}\right) \right]_{\sqrt{3}}^{2} \]
\[= \left(\frac{3}{2 \sqrt{3}} - 0 \right) + \left[\left(0 + 2 \sin^{-1}\left(1\right) \right) - \left(\frac{\sqrt{3}}{2} \cdot 1 + 2 \sin^{-1}\left(\frac{\sqrt{3}}{2}\right) \right) \right] \]
\[= \frac{\sqrt{3}}{2} + 2 \cdot \frac{\pi}{2} - \frac{\sqrt{3}}{2} - 2 \cdot \frac{\pi}{3} \]
\[A = \frac{\pi}{3} \text{ sq.units} \]
Find the area enclosed between \(y = |x - 1| \) and \(y = -|x - 1| + 1 \)

\[
\begin{align*}
\text{plot} \quad y &= |x - 1| \\
y &= -|x - 1| + 1
\end{align*}
\]

\[
\begin{align*}
&= \int_{1}^{3} \left(y_1 - y_2 \right) \, dx + \int_{1}^{3} \left(y_3 - y_4 \right) \, dx \\
&= \frac{3}{2} \int_{1}^{3} \left(x - 1 + x \right) \, dx + \frac{3}{2} \int_{1}^{3} \left(-x + 2 - x + 1 \right) \, dx \\
&= \frac{3}{2} \int_{1}^{3} \left(2x - 1 \right) \, dx + \frac{3}{2} \int_{1}^{3} \left(3 - 2x \right) \, dx \\
&= \left[\frac{x^2 - x}{2} \right]_{1}^{3} + \left[\frac{3x - x^2}{2} \right]_{1}^{3} \\
&= \left[1 - 1 \right] - \left(\frac{1}{4} - \frac{1}{2} \right) + \left(\frac{9}{2} - \frac{9}{4} \right) - \left(3 - 1 \right) \\
&= \frac{1}{4} + \frac{9}{4} - 2 \\
&= \frac{1}{2} \text{ Square units}
\end{align*}
\]
Find the Area enclosed between $x^2 + y^2 = 16a^2$ and $y^2 = 6ax$

Equation (1) represents a circle with centre $(0,0)$ and meets axes $(\pm 4a, 0), (0, \pm 4a)$. Equation (2) represents a parabola with vertex $(0,0)$ and axis as x-axis. Points of intersection of circle and parabola are $(2a, 2\sqrt{3}a), (2a, -2\sqrt{3}a)$.

A rough sketch of curves is given as:-

![Diagram of intersecting circle and parabola](image)
Find the Area enclosed between \(x^2 + y^2 = 8x\) and \((x-4)^2 + y^2 = 16\) and \(y^2 = 4x\)

Equation (1) represents a circle with centre \((4,0)\) and meets axes at \((0,0)\) and \((8,0)\).
Equation (2) represent a parabola with vertex \((0,0)\) and axis as x-axis. They intersect at \((4,-4)\) and \((4,4)\).
A rough sketch of the curves is as under:

Shaded region is the required region

Required area = Region OABO

Required area = Region ODBO + Region DABD

Region ODBO is sliced into rectangles of area $y_1 \Delta x$. This approximation rectangle can slide from $x = 0$ to $x = 4$. So,

Region ODBO = $\int_{0}^{4} y_1 \, dx$

$= \int_{0}^{4} 2\sqrt{x} \, dx$

$= 2 \left(\frac{2}{3} x^{\frac{3}{2}} \right)_{0}^{4}$

Region ODBO = $\frac{32}{3}$ sq. units

Region DABD is sliced into rectangles of area $y_2 \Delta x$. Which moves from $x = 4$ to $x = 8$. So,

Region DABD = $\int_{4}^{8} y_2 \, dx$

$= \int_{4}^{8} \sqrt{16 - (x - 4)^2} \, dx$

$= \left[\frac{(x-4)}{2} \sqrt{16 - (x-4)^2} + \frac{16}{2} \sin^{-1}\left(\frac{x-4}{4} \right) \right]_{4}^{8}$

$= \left[\left(0 + 8 \cdot \frac{\pi}{2} \right) - \left(0 + 0 \right) \right]$
Region \(DABD = 4\pi \) sq. units

Using (1), (2) and (3), we get

Required area = \(\left(\frac{32}{3} + 4\pi \right) \)

\(A = 4 \left(\pi + \frac{9}{3} \right) \) sq.units

Chapter 21 Areas of Bounded Regions Ex.21.1 Q49

To find area enclosed by

\(y = 5x^2 \) \hspace{2cm} (1)
\(y = 2x^2 + 9 \) \hspace{2cm} (2)

Equation (1) represents a parabola with vertex \((0,0)\) and axis as y-axis. Equation (2) represents a parabola with vertex \((0,9)\) and axis as y-axis. Points of intersection of parabolas are \((\sqrt{3},15)\) and \((-\sqrt{3},15)\).

A rough sketch of curves is given as:

Region \(AOCA \) is sliced into rectangles with area \((y_1 - y_2)dx\). It slides from \(x = 0 \) to \(x = \sqrt{3} \), so
Find the Area bound by \(y = 2x^2 \) and \(y = x^2 + 4 \)

Equation (1) represents a parabola with vertex \((0,0)\) and axis as \(y\)-axis. Equation (2) represents a parabola with vertex \((0,4)\) and axis as \(y\)-axis. Points of intersection of parabolas are \((2,8)\) and \((-2,8)\).

A rough sketch of curves is given as:-

Region \(AOCA\) is sliced into rectangles with area \((y_1 - y_2)dx\). And it slides from \(x = 0\) to \(x = 2\)
Required area = Region $AOBCA$
\[A = 2 \left(\text{Region } AOCA \right) \]
\[= 2 \int_0^2 \left(y_1 - y_2 \right) \, dx \]
\[= 2 \int_0^2 \left(x^2 + 4 - 2x^2 \right) \, dx \]
\[= 2 \int_0^2 \left(4 - x^2 \right) \, dx \]
\[= 2 \left[4x - \frac{x^3}{3} \right]_0^2 \]
\[= 2 \left[\left(8 - \frac{8}{3} \right) - \{0\} \right] \]
\[A = \frac{32}{3} \text{ sq.units} \]

Find the Area enclosed by $x = 0$, $x = 2$, $y = 2^x$, $y = 2x - x^2$

\[\Rightarrow \quad y = -\left\{ x^2 - 2x + 1 - 1 \right\} \]
\[= -\left[\left(x - 1 \right)^2 - 1 \right] \]
\[\Rightarrow \quad y = -\left(x - 1 \right)^2 + 1 \]
\[\Rightarrow \quad -(y - 1) = (x - 1)^2 \quad \quad \boxed{2} \]

Equation $\boxed{2}$ represents a downward parabola with axis parallel to y-axis and vertex at $(1, -1)$. Table for equation $\boxed{1}$ is
Shaded region is required region. It is sliced into rectangles with area $\int_{0}^{2} (y_1 - y_2) \, dx$. It slides from $x = 0$ to $x = 2$. So,

Required area = Region $ACOBA$

$$A = \int_{0}^{2} (y_1 - y_2) \, dx$$

$$= \int_{0}^{2} \left(\frac{2^x}{x^2} - 2x + x^2 \right) \, dx$$

$$= \left[\left(\frac{2^x}{\log 2} - x^2 + \frac{x^3}{3} \right) \right]_{0}^{2}$$

$$= \left(\frac{4}{\log 2} - 4 + \frac{8}{3} \right) - \left(\frac{1}{\log 2} - 0 \right)$$

$$A = \frac{3}{\log 2} - \frac{4}{3} \text{ sq. units}$$
Find the Area enclosed by $3x^2 + 5y = 32$ and $y = |x - 2|$

$$3x^2 = -5 \left(y - \frac{32}{5} \right) \quad - - - \{1\}$$

$$y = |x - 2|$$

$$\Rightarrow \quad y = \begin{cases} -(x - 2), & \text{if } x - 2 < 1 \\
(x - 2), & \text{if } x - 2 \geq 1 \end{cases}$$

$$\Rightarrow \quad y = \begin{cases} 2 - x, & \text{if } x < 2 \\
x - 2, & \text{if } x \geq 2 \end{cases} \quad - - - \{2\}$$

Equation \{1\} represents a downward parabola with vertex \(0, \frac{32}{5}\) and equation \{2\} represents lines. A rough sketch of curves is given as:–
Required area = Region $ABECDA$

$$A = \text{Region } ABEA + \text{Region } AECDA$$

$$= \int_0^2 (y_3 - y_4) \, dx + \int_2^4 (y_1 - y_2) \, dx$$

$$= \int_0^2 \left(\frac{32 - 3x^2}{5} - x + 2 \right) \, dx + \int_2^4 \left(\frac{32 - 3x^2}{5} - 2 + x \right) \, dx$$

$$= \int_0^2 \left(\frac{32 - 3x^2 - 5x + 10}{5} \right) \, dx + \int_2^4 \left(\frac{32 - 3x^2 - 10 + 5x}{5} \right) \, dx$$

$$= \frac{1}{5} \left[\int_0^2 \left(42 - 3x^2 - 5x \right) \, dx + \int_2^4 \left(22 - 3x^2 + 5x \right) \, dx \right]$$

$$A = \frac{1}{5} \left[\left(42x - x^3 - \frac{5x^2}{2} \right)_0^2 + \left(22x - x^3 + \frac{5x^2}{2} \right)_2^4 \right]$$

$$= \frac{1}{5} \left[\left(126 - 27 - \frac{45}{2} \right) - \left(84 - 8 - 10 \right) \right] + \left\{ \left(44 - 8 + 10 \right) - \left(-44 + 8 + 10 \right) \right\}$$

$$= \frac{1}{5} \left[\frac{153}{2} - 50 \right] + \{46 + 25\}$$

$$= \frac{1}{5} \left[\frac{21}{2} + 72 \right]$$

$$A = \frac{33}{2} \text{ sq. units}$$

Find the Area bound by y-axis (i.e. $x = 0$), and $4y = |4 - x^2|$

$$4y = \begin{cases} 4 - x^2, & \text{if } -2 \leq x \leq 2 \\ x^2 - 4, & \text{if } x < -2, x > 2 \end{cases}$$

$$\Rightarrow x^2 = \begin{cases} -4(y - 1), & \text{if } -2 \leq x \leq 2 \ (1) \\ 4(y + 1), & \text{if } x < -2, x > 2 \ (2) \end{cases}$$

Equation (1) represents a parabola with vertex $(0, 0)$ and downward. Equation (2) represents an upward parabola with vertex $(0, -1)$ equation (3) represents a circle with centre $(0, 0)$ and meets axes at $(\pm 5, 0), (\pm 0, 5)$. A rough sketch is as follows:
Required area = Region $EABCDE$

$$A = \text{Region } EACDE + \text{Region } ABCA$$

$$A = \int_{0}^{2} (y_1 - y_2) \, dx + \int_{2}^{3} (y_1 - y_2) \, dx$$

$$= \int_{0}^{2} \left(\sqrt{25 - x^2} - 1 + \frac{x^2}{4} \right) \, dx + \int_{2}^{3} \left(\sqrt{25 - x^2} \, dx - \frac{x^2}{4} + 1 \right) \, dx$$

$$A = \left[\frac{x}{2} \sqrt{25 - x^2} + \frac{25}{2} \sin^{-1} \left(\frac{x}{5} \right) - x + \frac{x^3}{12} \right]_{0}^{2} + \left[\frac{x}{2} \sqrt{25 - x^2} + \frac{25}{2} \sin^{-1} \left(\frac{x}{5} \right) - x + \frac{x^3}{12} \right]_{2}^{3}$$

$$= \left[\left(\sqrt{21} + \frac{25}{2} \sin^{-1} \left(\frac{2}{5} \right) - 2 + \frac{8}{12} \right) - \left(0 + 0 + 0 \right) \right] + \left[\left(6 + \frac{25}{2} \sin^{-1} \left(\frac{4}{5} \right) - \frac{16}{3} + 4 \right) - \left(\sqrt{21} + \frac{25}{2} \sin^{-1} \left(\frac{2}{5} \right) - \frac{2}{3} + 2 \right) \right]$$

$$= \sqrt{21} + \frac{25}{2} \sin^{-1} \left(\frac{2}{5} \right) - 2 + \frac{2}{3} + 0 + \frac{25}{2} \sin^{-1} \left(\frac{4}{5} \right) - \frac{16}{3} + 4 - \sqrt{21} - \frac{25}{2} \sin^{-1} \left(\frac{2}{5} \right) + \frac{2}{3} - 2$$

$$= -6 + 2 + 18 - 16 + 12 + 2 - 6 + \frac{25}{2} \sin^{-1} \left(\frac{4}{5} \right)$$

$$= \frac{34 - 28 - \frac{25}{2} \sin^{-1} \left(\frac{4}{5} \right)}{3}$$

$$A = 2 + \frac{25}{2} \sin^{-1} \left(\frac{4}{5} \right) \text{ sq. units}$$

CBSE Standard 12 Math Survival Guide - Area & Volume Problems by Prof. Subhashish Chattopadhyay
SKMClasses Bangalore Useful for IIT-JEE, I.Sc. PU-II, Boards, IGCSE IB AP-Mathematics and other exams
Find the area bounded by \(x = 0 \), \(y = 1 \), \(y = 4 \), and \(y = 4x^2 \).

Equation (1) represents a parabola with vertex \((0,0)\) and axis as \(y\)-axis. \(x = 0\) is \(y\)-axis and \(y = 1\), \(y = 4\) are lines parallel to \(x\)-axis passing through \((0,1)\) and \((0,4)\) respectively. A rough sketch of the curves is given as:

![Parabola and lines diagram]

Shaded region is required area and it is sliced into rectangles with area \(x \cdot \Delta y\) it slides from \(y = 1\) to \(y = 4\), so

Required area = Region \(ABCD\)

\[
= \int_{1}^{4} x \, dy
= \int_{1}^{4} \sqrt{4y} \, dy
= \frac{1}{2} \int_{1}^{4} \sqrt{y} \, dy
= \frac{1}{2} \left[\frac{2}{3} \sqrt[3]{y} \right]_{1}^{4}
= \frac{1}{2} \left[\left(\frac{2}{3} \cdot 4 \sqrt[3]{4} \right) - \left(\frac{2}{3} \cdot 1 \sqrt[3]{1} \right) \right]
= \frac{1}{2} \left[\frac{16}{3} - \frac{2}{3} \right]
\]

Required area = \(\frac{7}{3}\) sq. units
Find the Area bounded by $y^2 = 2x + 1$, $- (1)$ and $x - y = 1$, $-(2)$

Equation (1) is a parabola with vertex $\left(-\frac{1}{2}, 0\right)$ and passes through $(0, 1), (0, -1)$.
Equation (2) is a line passing through $(1, 0)$ and $(0, -1)$. Points of intersection of parabola and line are $(3, 2)$ and $(0, -1)$.

A rough sketch of the curves is given as:-

Shaded region represents the required area. It is sliced in rectangles of area $\left(x_1 - x_2\right) dy$.
It slides from $y = -1$ to $y = 3$, so
Required area = Region \(ABCDA\)

\[
= \int_{-1}^{3} \left(x_1 - x_2 \right) dy
\]

\[
= \int_{-1}^{3} \left(1 + y - \frac{y^2 - 1}{2} \right) dy
\]

\[
= \frac{1}{2} \int_{-1}^{3} \left(2 + 2y - y^2 + 1 \right) dy
\]

\[
= \frac{1}{2} \int_{-1}^{3} \left(3 + 2y - y^2 \right) dy
\]

\[
= \frac{1}{2} \left[3y + y^2 - \frac{y^3}{3} \right]_{-1}
\]

\[
= \frac{1}{2} \left[(9 + 9 - 9) - \left(-3 + 1 + \frac{1}{3} \right) \right]
\]

\[
= \frac{1}{2} \left[9 + \frac{5}{3} \right]
\]

\[
= \frac{32}{6}
\]

Required area = \(\frac{16}{3}\) sq. units
Find the Area bounded by $y = x - 1, - (1)$ and $(y - 1)^2 = 4(x + 1)$

Equation (1) represents a line passing through $(1,0)$ and $(0,-1)$ equation (2) represents a parabola with vertex $(-1,1)$ passes through $(0,3), (0,-1), \left(-\frac{3}{4},0\right)$.

Their points of intersection $(0,-1)$ and $(8,7)$.

A rough sketch of curves is given as:

\[\text{Shaded region is required area. It is sliced in rectangles of area } (x_1 - x_2) \cdot y.\]

It slides from $y = -1$ to $y = 7$, so
Required area = Region \(ABCD\)

\[
A = \int_{-1}^{7} (x_1 - x_2) \, dy
= \int_{-1}^{7} \left(y + 1 - \frac{(y-1)^2}{4} + 1 \right) \, dy
= \frac{1}{4} \int_{-1}^{7} \left(4y + 4 - y^2 - 1 + 2y + 4 \right) \, dy
= \frac{1}{4} \int_{-1}^{7} \left(6y + 7 - y^2 \right) \, dy
= \frac{1}{4} \left[3y^2 + 7y - \frac{y^3}{3} \right]_{-1}^{7}
= \frac{1}{4} \left[(147 + 49 - \frac{343}{3}) - (3 - 7 + \frac{1}{3}) \right]
= \frac{1}{4} \left[\frac{245}{3} + \frac{11}{3} \right]

A = \frac{64}{3} \text{ sq. units}

Find the Area enclosed by

\(y = 6x - x^2 \)

\[\Rightarrow \quad -y = x^2 - 6x \]

\[\Rightarrow \quad -y = x^2 - 6x + 9 - 9 \]

\[\Rightarrow \quad -(y - 9) = (x - 3)^2 \quad (1)\]

And

\[y = x^2 - 2x \]

\[y + 1 = x^2 - 2x + 1 \]

\[(y + 1) = (x - 1)^2 \quad (2) \]

Equation \((1)\) represents a parabola with vertex \(\{3,9\}\) and downward. Equation \((2)\) represents a parabola with vertex \(\{1,-1\}\) and upward. Points of intersection of parabolas are \(\{0,0\}\) and \(\{4,8\}\). A rough sketch of the curves is given as:-

CBSE Standard 12 Math Survival Guide - Area & Volume Problems by Prof. Subhashish Chattopadhyay
SKMClasses Bangalore Useful for IIT-JEE, I.Sc. PU-II, Boards, IGCSE IB AP-Mathematics and other exams
Shaded region is sliced into rectangles of area \((y_1 - y_2)\Delta x\). It slides from \(x = 0\) to \(x = 4\), so

Required area - Region APOQA
\[
A = \int_{0}^{4} (y_1 - y_2) \, dx
= \int_{0}^{4} (6x - x^2 - x^2 + 2x) \, dx
= \int_{0}^{4} (6x - 2x^2) \, dx
= \left[4x^2 - \frac{2x^3}{3} \right]_{0}^{4}
= \left(64 - \frac{128}{3}\right) - 0
= \frac{64}{3}

A = \frac{64}{3} \text{ sq. units}
Find the Area bounded by $y = x^2$, and $y = |x|$

The given area is symmetrical about y-axis.

$\therefore \text{Area OACO} = \text{Area ODBO}$
The point of intersection of parabola, \(x^2 = y \), and line, \(y = x \), is A \((1, 1)\)

Area of OACO = Area \(\triangle OAB\) - Area OBACO

\[
\text{Area of } \triangle OAB = \frac{1}{2} \times OB \times AB = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}
\]

Area of OBACO = \(\int_0^1 y \, dx = \int_0^1 x^2 \, dx = \left[\frac{x^3}{3} \right]_0^1 = \frac{1}{3} \)

\Rightarrow \text{Area of OACO} = \text{Area of } \triangle OAB - \text{Area of OBACO}

\[
= \frac{1}{2} - \frac{1}{3} = \frac{1}{6}
\]

Therefore, required area = \(2 \left[\frac{1}{6} \right] = \frac{1}{3} \) units

Find the Area bounded by \(y = 2 - x^2 \) \(\ldots (1)\) and \(y + x = 0 \) \(\ldots (2)\)

Equation \((1)\) represents a parabola with vertex \((0, 2)\) and downward, meets axes at \(\pm \sqrt{2}, 0\).

Equation \((2)\) represents a line passing through \((0, 0)\) and \((2, -2)\). The points of intersection of line and parabola are \((2, -2)\) and \((-1, 1)\).

A rough sketch of curves is as follows:
Shaded region is sliced into rectangles with area $ = (y_1 - y_2) \, dx$. It slides from $x = -1$ to $x = 2$, so

Required area = Region $ABPCOA$

\[A = \int_{-1}^{2} (y_1 - y_2) \, dx \]
\[= \int_{-1}^{2} (2 - x^2 + x) \, dx \]
\[= \left[2x - \frac{x^3}{3} + \frac{x^2}{2} \right]_{-1} \]
\[= \left[\left(4 - \frac{8}{3} + 2 \right) - \left(-2 + \frac{1}{3} + \frac{1}{2} \right) \right] \]
\[= \left[\frac{10}{3} + \frac{7}{6} \right] \]
\[= \frac{27}{6} \]
\[A = \frac{9}{2} \text{ sq. units} \]
Find the Area enclosed by \(x^2 = 4y \) \((-1)\) and \(x = 4y - 2 \) \((2)\)

shaded area \(\text{OBAO} \).

Let \(A \) and \(B \) be the points of intersection of the line and parabola.

Coordinates of point \(A \) are \((-1, \frac{1}{4})\).
Coordinates of point B are (2, 1).

We draw AL and BM perpendicular to x-axis.

It can be observed that,

\[
\text{Area OBAO} = \text{Area OBCO} + \text{Area OACO} \quad \text{(1)}
\]

Then, \[
\text{Area OBCO} = \text{Area OMBC} - \text{Area OMBO}
\]

\[
\begin{align*}
\int_{0}^{3} \frac{x+2}{4} \, dx - \int_{0}^{3} \frac{x^2}{4} \, dx \\
= \frac{1}{4} \left[x^2 + 2x \right]_{0}^{3} - \frac{1}{4} \left[\frac{x^3}{3} \right]_{0}^{3} \\
= \frac{1}{4} \left[2 + 4 \right] - \frac{1}{4} \left[\frac{8}{3} \right] \\
= \frac{3}{2} - \frac{2}{3} \\
= \frac{5}{6}
\end{align*}
\]
Similarly, Area \(OACO = \text{Area OLAC} - \text{Area OLAO} \)

\[
\int_{-1}^{1} \frac{x+2}{4} \, dx - \int_{1}^{0} \frac{x^3}{4} \, dx \\
= \frac{1}{4} \left[\frac{x^2}{2} + 2x \right]_{-1}^{0} - \frac{1}{4} \left[\frac{x^3}{3} \right]_{-1}^{1} \\
= -\frac{1}{4} \left[\frac{(-1)^2}{2} + 2(-1) \right] - \frac{1}{4} \left[\frac{(-1)^3}{3} \right] \\
= -\frac{1}{4} \left[\frac{1}{2} - 2 \right] - \frac{1}{12} \\
= \frac{1}{2} - \frac{1}{8} - \frac{1}{12} \\
= \frac{7}{24}
\]

Therefore, required area = \(\frac{5}{6} + \frac{7}{24} = \frac{9}{8} \) units

Find the Area enclosed by

\(y = 4x - x^2 \) \(\Rightarrow \) \(-y = x^2 - 4x + 4 - 4 \) \(\Rightarrow \) \(-y + 4 = (x - 2)^2 \) \(\Rightarrow \) \(-(y - 4) = (x - 2)^2 \) (1)

And

\(y = x^2 - x \) \(\Rightarrow \) \(y + \frac{1}{4} = (x - \frac{1}{2})^2 \) (2)
Equation (1) represents a parabola downward with vertex at (2,4) and meets axes at (4,0), (0,0). Equation (2) represents a parabola upward whose vertex is \(\left(\frac{1}{2}, \frac{-1}{4} \right) \) and meets axes at (1,0), (0,0). Points of intersection of parabolas are (0,0) and \(\left(\frac{5}{2}, \frac{15}{4} \right) \).

A rough sketch of the curves is as under:

![Diagram of parabolas with points of intersection and shaded region]

Shaded region is required area it is sliced into rectangles with area = \((y_1 - y_2) \cdot x \). It slides from \(x = 0 \) to \(x = \frac{5}{2} \), so
Find the Area bounded by \(x = 0 \), \(x = 1 \) and \(y = x - (1) \) and \(y = x^2 + 2 \) \((2) \).

Equation \((1) \) is a line passing through \((2,2) \) and \((0,0) \). Equation \((2) \) is a parabola upward with vertex at \((0,2) \). A rough sketch of curves is as under:-
Shaded region is sliced into rectangles of area \((y_1 - y_2) \, dx \). It slides from \(x = 0 \) to \(x = 1 \), so

Required area = Region \(OABCO \)

\[
A = \int_{0}^{1} (y_1 - y_2) \, dx
= \int_{0}^{1} \left(x^2 + 2 - x \right) \, dx
= \left[\frac{x^3}{3} + 2x - \frac{x^2}{2} \right]_{0}
= \left[\left(\frac{1}{3} + 2 - \frac{1}{2} \right) - 0 \right]
= \left(\frac{2 + 12 - 3}{6} \right)
= \frac{11}{6} \text{ sq. units}
\]
Find the Area bounded by \(x = y^2 \) \(\cdots (1) \) and \(x = 3 - 2y^2 \) \(\cdots (2) \)

Equation \((1)\) represents an upward parabola with vertex \((0,0)\) and axis \(y\). Equation \((2)\) represents a parabola with vertex \((3,0)\) and axis as \(x\)-axis. They intersect at \((1,-1)\) and \((1,1)\). A rough sketch of the curves is as under:-

Required area = Region \(OABCO\)

\[
A = 2 \left[\text{Region } ODCO + \text{Region } EDCB \right] \\
= 2 \left[\int_0^1 y_1 \, dx + \int_1^3 y_2 \, dx \right] \\
= 2 \left[\int_0^1 \sqrt{x} \, dx + \int_1^3 \sqrt{\frac{3-x}{2}} \, dx \right] \\
= 2 \left[\left(\frac{2}{3}x^{\frac{3}{2}} \right)_0^1 + \left(\frac{2}{3} \left(-\frac{3-x}{2} \right) \sqrt{\frac{3-x}{2}} \left(-2 \right) \right)_1^3 \right] \\
= 2 \left[\left(\frac{2}{3} - 0 \right) + \left(0 - \left(\frac{2}{3} \cdot 1 \cdot \left(-2 \right) \right) \right) \right] \\
= 2 \left[\frac{2}{3} + \frac{4}{3} \right] \\
A = 4 \text{ sq. units}
\]
Find the Area between \(y = 4x - x^2 \) -- (1) \(y = x^2 - x \) -- (2)

Given curves are
\[y = 4x - x^2 \]
\[\Rightarrow \quad -(y - 4) = (x - 2)^2 \quad \text{---(1)} \]
and
\[y = x^2 - x \]
\[\Rightarrow \quad \left(y + \frac{1}{4}\right)^2 = \left(x - \frac{1}{2}\right)^2 \quad \text{---(2)} \]

Equation (1) represents a parabola downward with vertex at \((2, 4)\) and meets axes at \((4,0), (0,0)\). Equation (2) represents a parabola upward whose vertex is \(\left(\frac{1}{2}, -\frac{1}{4}\right)\) and meets axes at \((1,0), (0,0)\) and \(\left(\frac{5}{2}, \frac{15}{4}\right)\). A rough sketch of the curves is as under:-

Area of the region above \(x\)-axis
\[A_1 = \text{Area of region } OBA CO \]
\[= \text{Region } OBCO + \text{Region } BACB \]
\[= \int_{0}^{1} y_1 \, dx + \int_{1}^{2} (y_1 - y_2) \, dx \]
\[= \int_{0}^{1} (4x - x^2) \, dx + \int_{1}^{2} (4x - x^2 - x^2 + x) \, dx \]
\[= \left(\frac{4x^2}{2} - \frac{x^3}{3} \right) \bigg|_{0}^{1} + \left[\frac{5x^2}{2} - \frac{2x^3}{3} \right] \bigg|_{1}^{2} \]
\[= \left(\left(2 \right) - \left(\frac{1}{3} \right) \right) + \left[\left(\frac{125}{8} \right) - \left(\frac{250}{24} \right) \right] - \left(\frac{5}{2} - \frac{2}{3} \right) \]
\[= \frac{5}{3} - \frac{125}{24} + \frac{11}{6} \]
\[= \frac{121}{24} \text{ sq. units} \]

Area of the region below x-axis

\[A_2 = \text{Area of region } OPBO \]
\[= \text{Region } OBCO + \text{Region } BACB \]
\[= \int_{0}^{1} y_2 \, dx \]
\[= \int_{0}^{1} (x^2 - x) \, dx \]
\[= \left(\frac{x^3}{3} - \frac{x^2}{2} \right) \bigg|_{0}^{1} \]
\[= \left(\frac{1}{3} - \frac{1}{2} \right) - \{0\} \]
\[= \frac{1}{6} \]

\[A_2 = \frac{1}{6} \text{ sq. units} \]
Find the Area bounded by the lines $y = |x - 1|$ and $y = 3 - |x|$.

$$y = |x - 1|$$

$$\Rightarrow y = \begin{cases}
1 - x, & \text{if } x < 1 \\
1 - 1, & \text{if } x \geq 1
\end{cases}$$

$$\Rightarrow y = \begin{cases}
1 - x, & \text{if } x < 1 \\
0, & \text{if } x \geq 1
\end{cases}$$

and

$$y = 3 - |x|$$

$$\Rightarrow y = \begin{cases}
3 + x, & \text{if } x < 0 \\
3 - x, & \text{if } x \geq 0
\end{cases}$$

Drawing the rough sketch of lines (1), (2), (3) and (4) as under:

[Diagram showing the shaded region]

Shaded region is the required area.
Required area = Region $ABCD$ A

\[A = \text{Region } ABFA + \text{Region } AFCEA + \text{Region } CDEC \]
\[= \int_0^1 (x^2 + 1) \, dx + \int_1^2 (x + 1) \, dx + \int_1^2 (3 + x - 1 + x) \, dx \]
\[= \left[\frac{4x - x^2}{2} \right]_0^1 + \left[2x^2 \right]_1^2 + \left[3 + x - 1 + x \right]_1^2 \]
\[= \left[\frac{4 - 1}{2} \right] + \left[8 - 2 \right] + \left[3 - 1 + 1 \right] \]
\[= 4 - 3 + 2 = 3 \]

\[A = 4 \text{ sq. unit} \]
Find the Area bounded by $y = x|x| - 1$ and $x = -1$ and $x = 1$.

Required area = $\int_{-1}^{1} y \, dx$

= $\int_{-1}^{1} x \, |x| \, dx$

= $\int_{-1}^{1} x^2 \, dx + \int_{-1}^{1} x^2 \, dx$

= $\left[\frac{x^3}{3} \right]_{-1}^{1} + \left[\frac{x^3}{3} \right]_{0}^{1}$

= $\left(-\frac{1}{3} + \frac{1}{3} \right)$

= $\frac{2}{3}$ square units
Find the area bounded in an ellipse from $x = 0$ and $x = ae$

The required area fig., of the region $BOB'RFSB$ is enclosed by the ellipse and the lines $x = 0$ and $x = ae$.

Note that the area of the region $BOB'RFSB$

$$= 2 \int_0^{ae} y\,dx = 2 \int_0^{ae} \frac{b}{a} \sqrt{a^2 - x^2} \,dx$$

$$= \frac{2b}{a} \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^{ae}$$

$$= \frac{2b}{2a} \left[ae \sqrt{a^2 - a^2 e^2} + a^2 \sin^{-1} e \right]$$

$$= ab \left[e\sqrt{1 - e^2} + \sin^{-1} e \right]$$
Find the Area bounded by $x^2 + y^2 = 16$ (1) and $y^2 = 6x$ (2)

Area bounded by the circle and parabola

$$= 2 \left[\text{Area (OADO)} + \text{Area (ABDA)} \right]$$

$$= 2 \left[\int_{2}^{4} \sqrt{16} \, dx + \int_{2}^{4} \sqrt{16 - x^2} \, dx \right]$$
\[
\begin{align*}
&= 2 \left[\sqrt{6} \left(\frac{x^2}{3} \right) \right]_0^\frac{3}{2} + 2 \left(\frac{x}{2} \sqrt{16 - x^2} + \frac{16}{2} \sin^{-1} \left(\frac{x}{4} \right) \right)_0^\frac{3}{2} \\
&= 2\sqrt{6} \times \frac{2}{3} \left[\frac{x^2}{3} \right]_0^\frac{3}{2} + 2 \left(8 \cdot \frac{\pi}{2} - \sqrt{16 - 4} - 8 \sin^{-1} \left(\frac{1}{2} \right) \right) \\
&= \frac{4\sqrt{6}}{3} \left(2\sqrt{2} \right) + 2 \left[4\pi - \sqrt{12} - 8 \frac{\pi}{6} \right] \\
&= \frac{16\sqrt{3}}{3} + 8\pi - 4\sqrt{3} - \frac{8 \pi}{3} \\
&= \frac{4}{3} \left[4\sqrt{3} + 6\pi - 3\sqrt{3} - 2\pi \right] \\
&= \frac{4}{3} \left[\sqrt{3} + 4\pi \right] \\
&= \frac{4}{3} \left[4\pi + \sqrt{3} \right] \text{ square units} \\
\text{Area of circle} &= \pi \left(r \right)^2 \\
&= \pi \left(4 \right)^2 = 16\pi \text{ square units} \\
\text{Thus, Required area} &= 16\pi - \frac{4}{3} \left[4\pi + \sqrt{3} \right] \\
&= \frac{4}{3} \left[4 \times 3\pi - 4\pi - \sqrt{3} \right] \\
&= \frac{4}{3} \left(8\pi - \sqrt{3} \right) \\
&= \left(\frac{32}{3} \pi - \frac{4\sqrt{3}}{3} \right) \text{ sq. units}
\end{align*}
\]
Find the Area enclosed between \(x^2 = y \), Line \(y = x + 2 \), and \(x \)-axis represented by the shaded region \(OABC \) as

The point of intersection is \((-1, 1)\)

\[
\text{Area } OABC = \text{Area } (BCA) + \text{Area } COAC
\]

\[
= \int_{-1}^{1} (x + 2) \, dx + \int_{-1}^{0} x^2 \, dx
\]

\[
= \left[\frac{x^2}{2} + 2x \right]_{-1}^{1} + \left[\frac{x^3}{3} \right]_{-1}^{0}
\]

\[
= \left[\frac{(-1)^2}{2} + 2(-1) - \frac{(-2)^2}{2} - 2(-2) \right] + \left[\frac{(-1)^3}{3} \right]
\]

\[
= \frac{1}{2} - 2 - 2 + 4 + \frac{1}{3}
\]

\[
= \frac{5}{6} \text{ sq. units}
\]
Now let us discuss how to find volume.
To find volume imagine several slices of dx width. At any random position x the $y = \text{radius of the disk}$ is $f(x)$. If rotated by full circle then the area becomes $\pi r^2 = \pi (f(x))^2$

The elementary volume $dV = \pi (f(x))^2 \, dx$ Integrating this from $x = a$ to $x = b$ or say $x = 0$ to $x = \text{given limit}$, as the case may be, we get the total volume.

For example if the line $y = 3x$ is rotated around x-axis we get a cone
The resulting solid is a cone

\[V = \pi \int_a^b y^2 \, dx \]
\[= \pi \int_0^1 (3x)^2 \, dx \]
\[= \pi \int_0^1 9x^2 \, dx \]
\[= \pi \left[3x^3 \right]_0^1 \]
\[= \pi [3] - \pi [0] \]
\[= 3\pi \text{ unit}^3 \]
The volume of a cylinder is given by

\[V = \pi r^2 h \]

Because radius \(r = y \) and each disk is \(dx \) high, we notice that the volume of each slice is:

\[V = \pi y^2 dx \]

Adding the volumes of the disks (with infinitely small \(dx \)), we obtain the formula:

\[V = \pi \int_a^b y^2 dx \quad V = \pi \int_a^b (f(x))^2 dx \]

\(y = f(x) \) is the equation of the curve whose area is being rotated
\(a \) and \(b \) are the limits of the area being rotated
\(dx \) show that the area is being rotated about the x-axis.

Find the volume if the area bounded by the curve \(y = x^3 + 1 \), the x-axis and the limits of \(x = 0 \) and \(x = 3 \) is rotated around the x-axis.
If we consider only part of the cone say from \(x = 1 \) to \(x = 2 \), for a line \(y = 2x \) rotated around x-axis then

The volume can be found as

\[
V = \pi \int_a^b y^2 \, dx \\
= \pi \int_0^3 (x^3 + 1)^2 \, dx \\
= \pi \int_0^3 (x^6 + 2x^3 + 1) \, dx \\
= \pi \left[\frac{x^7}{7} + \frac{x^4}{2} + x \right]_0^3 \\
= \pi \left([355.93] - [0] \right) \\
= 1118.2 \text{ units}^3
\]

If we consider only part of the cone say from \(x = 1 \) to \(x = 2 \), for a line \(y = 2x \) rotated around x-axis then

The volume can be found as

\[
V = \pi \left[\frac{4x^3}{3} \right]_1^2 \\
= \pi \left[\frac{4(2)^3}{3} \right] - \left[\frac{4(1)^3}{3} \right] \\
= \pi \left[\frac{32}{3} - \frac{4}{3} \right] \\
= \pi \frac{28}{3} \\
= 9.33 \pi \text{ unit}^3
\]
For Review of Calculus Recall the various tricks, formulae, and rules of solving Indefinite Integrals

\begin{align*}
(i) \int \frac{1}{x^2 + a^2} \, dx &= \frac{1}{a} \tan^{-1} \frac{x}{a} + C \\
(ii) \int \frac{1}{a^2 - x^2} \, dx &= \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C = \frac{1}{a} \tanh^{-1} \left(\frac{x}{a} \right) + C \\
(iii) \int \frac{1}{x^2 - a^2} \, dx &= \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C = -\frac{1}{a} \coth^{-1} \left(\frac{x}{a} \right) + C \\
(iv) \int \frac{dx}{\sqrt{a^2 - x^2}} &= \sin^{-1} \frac{x}{a} + C \\
(v) \int \frac{dx}{\sqrt{x^2 - a^2}} &= \log \left| x + \sqrt{x^2 - a^2} \right| + C = \cosh^{-1} \left(\frac{x}{a} \right) + C \\
(vi) \int \frac{dx}{\sqrt{x^2 + a^2}} &= \log \left| x + \sqrt{x^2 + a^2} \right| + C = \sinh^{-1} \left(\frac{x}{a} \right) + C \\
(vii) \int \frac{x^2 + a^2}{\sqrt{x^2 + a^2}} \, dx &= \frac{1}{2} \left[x \sqrt{x^2 + a^2} + a^2 \log \left| x + \sqrt{x^2 + a^2} \right| \right] + C \\
(viii) \int \frac{x^2 - a^2}{\sqrt{x^2 - a^2}} \, dx &= \frac{1}{2} \left[x \sqrt{x^2 - a^2} + a^2 \sin^{-1} \left(\frac{x}{a} \right) \right] + C \\
(ix) \int \frac{x}{\sqrt{x^2 - a^2}} \, dx &= \frac{1}{2} \left[x \sqrt{x^2 - a^2} - a^2 \log \left| x + \sqrt{x^2 - a^2} \right| \right] + C \\
(x) \int \left(px + q \right) \sqrt{ax^2 + bx + c} \, dx &= \frac{p}{2a} \int \left(2ax + b \right) \sqrt{ax^2 + bx + c} \, dx \\
&\quad + \left(\frac{q - pb}{2a} \right) \int \sqrt{ax^2 + bx + c} \, dx
\end{align*}
\[\int e^x dx = e^x\]
\[\int e^{ax} dx = \frac{1}{a} e^{ax}\]
\[\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx)\]
\[\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx)\]
\[\int \frac{dx}{\sqrt{x^2 + a^2}} = \frac{1}{a} \log \left| \frac{x}{a} + \frac{a}{x} \right| + c\]
\[\int \log x dx = x(\log x - 1) + c\]
\[\int \frac{1}{x} dx = \log |x| + c\]
\[\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{ax - a}{x + a} + c\]
\[\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c\]
\[\int \csc x \cot x dx = -\csc x + c\]
\[\int \csc^2 x dx = -\cot x + c\]
\[\int \sec x \tan x dx = \sec x + c\]
\[\int \sec^2 x dx = \tan x + c\]
\[\int \sin x dx = -\cos x + c\]
\[\int \cos x dx = \sin x + c\]
\[\int (ax + b)^n = \frac{1}{a} \frac{(ax + b)^{n+1}}{n+1} + C, \; \text{if}\; n \neq -1\]
\[\int \frac{dx}{ax + b} = \frac{1}{a} \log |ax + b| + C\]
\[\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C\]
\[\int \cos(ax + b) dx = \frac{1}{a} \sin(ax + b) + C\]
\[\int \sec^2(ax + b) dx = \frac{1}{a} \tan(ax + b) + C\]
\[\int \csc^2(ax + b) dx = -\frac{1}{a} \cot(ax + b) + C\]
\[\int \csc(ax + b) \cot(ax + b) dx = -\frac{1}{a} \csc(ax + b) + C\]

For Integrals of the form

(i) \[\int \frac{dx}{a + b \sin x}\]
(ii) \[\int \frac{dx}{a + b \cos x}\]
(iii) \[\int \frac{dx}{a \sin x + b \cos x + c}\]

Put

\[\cos x = \frac{1 - \tan^2 x/2}{1 + \tan^2 x/2}, \quad \sin x = \frac{2 \tan x/2}{1 + \tan^2 x/2}\]
Some advanced procedures...

\[\int \frac{x^m}{(a + bx)^p} \, dx \]
\[m \text{ is } a + \text{ve integer} \]

Put \(a + bx = z \)

\[\int \frac{dx}{x^m (a + bx)^p} \]

Put \(a + bx = z^x \)

where either \((m \text{ and } p \text{ positive integers})\) or \((m \text{ and } p \text{ are fractions, but } m + p = \text{integers} > 1)\)

\[\int x^m (a + bx^n)^p \, dx, \]
where \(m, n, p \) are rationals.

(i) \(p \) is \(a + \text{ve integer} \)

Apply Binomial theorem to \([a + bx]^p\)

Put \(x = z^k \) where \(k = \text{common denominator of } m \text{ and } n. \)

(ii) \(p \) is \(a - \text{ve integer} \)

Put \((a + bx^n) = z^k \) where \(k = \text{denominator of } p. \)

(iii) \(\frac{m + 1}{n} \) is an integer

Put \(a + bx^n = x^k z^k \)

where \(k = \text{denominator of fraction } p. \)

\[\int \frac{x^2 \, dx}{x^4 + k x^2 + a^4} = \frac{1}{2} \int \frac{(x^2 + a^2) \, dx}{x^4 + k x^2 + a^4} + \frac{1}{2} \int \frac{(x^2 - a^2) \, dx}{x^4 + k x^2 + a^4} \]

\[\int \frac{dx}{(x^4 + k x^2 + a^4)} = \frac{1}{2a^2} \int \frac{(x^2 + a^2) \, dx}{x^4 + k x^2 + a^4} - \frac{1}{2a^2} \int \frac{(x^2 - a^2) \, dx}{x^4 + k x^2 + a^4} \]

\[\int \frac{dx}{(x^2 + k)^n} = \frac{x}{k (2n-2) (x^2 + k)^{n-1}} + \frac{(2n-3)}{k (2n-2)} \int \frac{dx}{(x^2 + k)^{n-1}} \]

\[\int \frac{dx}{(Ax^2 + Bx + C) \sqrt{(ax^2 + bx + c)}} = \frac{ax^2 + bx + c}{Ax^2 + Bx + C} \]

For we need to substitute

\[\frac{ax^2 + bx + c}{Ax^2 + Bx + C} = f \]
Every student knows that the last step is …

\[\int_a^b f(x) \, dx = [F(x)]_a^b = F(b) - F(a) \]

Definite Integrals have to be solved by (more than) 14 different ways, depending on the type of problem.

Type 1 - Here no property, specific to Definite Integrals is used.

The integration is solved completely as Indefinite. Finally the Upper and Lower limits are substituted.

Example - 1.1 -

\[\int_0^a \frac{1}{1 + \sin x} \, dx \]

If we need to solve

\[\int \frac{1}{1 + \sin x} \, dx \]

we should know how to integrate \((\text{Indefinite Integral}) \)

In the solution, notice that no special or specific property of Definite Integral is being used.
Similarly example - 1.2 -

\[I = \int_{0}^{2} \frac{1}{1 + \sin x} \cdot \frac{1 - \sin x}{1 - \sin x} \, dx \]

\[= \int_{0}^{2} \frac{1 - \sin x}{\cos^2 x} \, dx \]

\[= \left[\sec x \right]_{0}^{2} - \left[\tan x \cdot \sec x \right]_{0}^{2} \]

\[= [0 - 0] - [-1 - 1] \]

\[= 2 \]

As we know from indefinite integrals that Integration of Ln |x| is x Ln |x| - x

If we substitute the upper limit we get 2 ln 2 - 2

And substituting the lower limit we get 1 ln 1 - 1 = -1

So final result is 2 ln 2 - 2 - (-1) = 2 ln 2 - 1

Example - 1.3 -

If we need to integrate by parts then do not apply the limits at intermediate steps.

Solve the whole problem as indefinite and then finally apply the limits

Recall \[\int u v \, dx = u \int v \, dx - \left(u' \int v \, dx \right) \, dx. \]
So to solve \(\int_{0}^{1} \left(x^2 + 1 \right) e^{-x} \, dx \) we proceed as above equation

Let \(u = x^2 + 1 \) and \(dv = e^{-x} \, dx \). Then \(du = 2x \, dx \) and \(v = -e^{-x} \)

\[
\int_{0}^{1} \left(x^2 + 1 \right) e^{-x} \, dx = \left[-(x^2 + 1)e^{-x} \right]_{0}^{1} + 2 \int_{0}^{1} x e^{-x} \, dx
\]

\[
\int_{0}^{1} x e^{-x} \, dx = \left[-xe^{-x} \right]_{0}^{1} + \int_{0}^{1} e^{-x} \, dx = \left[-e^{-x}(x + 1) \right]_{0}^{1}
\]

Thus finally the required Solution is

\[
\int_{0}^{1} \left(x^2 + 1 \right) e^{-x} \, dx = \left[-e^{-x} \left(x^2 + 2x + 3 \right) \right]_{0}^{1} = -6e^{-1} + 3
\]

Example - 1.4 -

\[
\int_{0}^{1} x \tan^{-1} x \, dx = \frac{\pi}{4} - \frac{1}{2}
\]

Show that

\[
\int_{0}^{1} x \tan^{-1} x \, dx = \tan^{-1} x \int_{0}^{1} x \, dx - \int_{0}^{1} \left(\int_{0}^{x} \frac{d}{dx} \left(\tan^{-1} x \right) \, dx \right) \, dx
\]

\[
= \left[\frac{x^2}{2} \tan^{-1} x \right]_{0}^{1} - \frac{1}{2} \int_{0}^{1} \frac{x^2}{1 + x^2} \, dx
\]

\[
= \left[\frac{x^2}{2} \tan^{-1} x \right]_{0}^{1} - \frac{1}{2} \int_{0}^{1} \frac{1 + x^2 - 1}{1 + x^2} \, dx
\]

\[
= \frac{1}{2} \left(\frac{\pi}{4} \right) - \frac{1}{2} \left[\int_{0}^{1} \frac{dx}{1 + x^2} - \int_{0}^{1} \frac{dx}{1 + x^2} \right]
\]

\[
= \frac{\pi}{8} - \frac{1}{2} \left[x - \tan^{-1} x \right]_{0}^{1}
\]

\[
= \frac{\pi}{8} - \frac{1}{2} \left[1 - \frac{\pi}{4} \right]
\]

\[
= \frac{\pi}{8} - \frac{1}{2} + \frac{\pi}{8}
\]

\[
= \frac{\pi}{4} - \frac{1}{2}
\]
Example - 1.5 -

Solve \(\int_0^2 \frac{x}{\sqrt{x+2}} \, dx \) Put \(x + 2 = t^2 \) so \(dx = 2t \, dt \) at \(x = 0 \) \(t = \sqrt{2} \) at \(x = 2 \) \(x + 2 = 4 = t^2 \Rightarrow t = 2 \)

\[
I = \int_{\sqrt{2}}^2 \frac{(t^2 - 2)t}{2} \, 2t \, dt \\
= 2 \int_{\sqrt{2}}^2 (t^2 - 2) \, t \, dt \\
= 2 \int_{\sqrt{2}}^2 (t^4 - 2t^2) \, dt \\
= 2 \left[\frac{t^5}{5} \right]_{\sqrt{2}}^2 \\
= 2 \left[\frac{32}{5} - \frac{16}{5} - \frac{4\sqrt{2}}{3} + \frac{4\sqrt{2}}{3} \right] \\
= \frac{16}{5} \left(2 + \sqrt{2} \right) \\
= \frac{16\sqrt{2} \left(\sqrt{2} + 1 \right)}{15}
\]

Example - 1.6 -

Solve \(\int_1^3 \frac{(x - x^3)^{1/3}}{x^2} \, dx \)

\[
\text{let } x = \sin \theta \Rightarrow dx = \cos \theta \, d\theta \\
\text{When } x = \frac{1}{3}, \theta = \sin^{-1} \left(\frac{1}{3} \right) \text{ and when } x = 1, \theta = \frac{\pi}{2}
\]

\[
\Rightarrow I = \int_{\sin^{-1} \left(\frac{1}{3} \right)}^{\frac{\pi}{2}} \frac{(\sin \theta - \sin^3 \theta)^{1/3}}{\sin^2 \theta} \cos \theta \, d\theta \\
= \int_{\sin^{-1} \left(\frac{1}{3} \right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{1/3} (1 - \sin^2 \theta)^{1/3}}{\sin^4 \theta} \cos \theta \, d\theta \\
= \int_{\sin^{-1} \left(\frac{1}{3} \right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{1/3} (\cos \theta)^{2/3}}{\sin^2 \theta} \cos \theta \, d\theta \\
= \int_{\sin^{-1} \left(\frac{1}{3} \right)}^{\frac{\pi}{2}} \frac{(\sin \theta)^{1/3} (\cos \theta)^{2/3}}{\sin^2 \theta} \cos \theta \, d\theta \\
= \int_{\sin^{-1} \left(\frac{1}{3} \right)}^{\frac{\pi}{2}} \frac{\cos \theta \frac{1}{3} \cos^2 \theta}{\sin^2 \theta} \, d\theta \\
= \int_{\sin^{-1} \left(\frac{1}{3} \right)}^{\frac{\pi}{2}} \frac{\cos \theta \frac{1}{3} \cos^2 \theta}{\sin^2 \theta} \, d\theta \\
\Rightarrow I = -\int_{\sqrt{2}}^0 (t)^{\frac{5}{3}} \, dt \\
= -\left[\frac{3}{8} (t)^{\frac{8}{3}} \right]_{\sqrt{2}}^0 \\
= -\frac{3}{8} \left[\frac{8}{3} \right]_{\sqrt{2}}^0 \\
= -\frac{3}{8} \left(2\sqrt{2} \right)^8
\]
AIEEE (now known as IIT-JEE main) - 2004

Solve

\[\int_{0}^{\pi/2} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} \, dx \]

The value of \(I = \int_{0}^{\pi/2} \frac{(\sin x + \cos x)^2}{\sqrt{1 + \sin 2x}} \, dx \) is

(a) 2 \hspace{1cm} (b) 1 \hspace{1cm} (c) 0 \hspace{1cm} (d) 3

AIEEE (now known as IIT-JEE main) - 2007

The solution for \(x \) of the equation \(\int_{\frac{x}{\sqrt{2}}}^{\frac{\pi}{2}} \frac{dt}{\sqrt{t^2 - 1}} = \frac{\pi}{2} \) is

(a) \(\frac{\sqrt{3}}{2} \) \hspace{1cm} (b) \(2\sqrt{2} \) \hspace{1cm} (c) 2 \hspace{1cm} (d) \(\pi \)

Solution:

\[\left[\sec^{-1} t \right]_{\frac{x}{\sqrt{2}}}^{\frac{\pi}{2}} = \frac{\pi}{2} \]

\[\sec^{-1} x - \sec^{-1} \sqrt{2} = \frac{\pi}{2} \Rightarrow \sec^{-1} x = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4} \]

\(x = -\sqrt{2} \) \hspace{1cm} There is no correct option.
Example - 1.7 -

If \[I = \int_{2}^{3} \frac{2x^5 + x^4 - 2x^3 + 2x^2 + 1}{(x^2 + 1)(x^4 - 1)} \, dx \], then

\[I \text{ equals} \]

(a) \(\frac{1}{2} \log 6 + \frac{1}{10} \)
(b) \(\frac{1}{2} \log 6 - \frac{1}{10} \)
(c) \(\frac{1}{2} \log 3 - \frac{1}{10} \)
(d) \(\frac{1}{2} \log 2 + \frac{1}{10} \)

Solution

\[
2x^5 + x^4 - 2x^3 + 2x^2 + 1 = 2x^3(x^2 - 1) + (x^2 + 1)^2
\]

\[\therefore I = \int_{2}^{3} \frac{2x^3(x^2 - 1) + (x^2 + 1)^2}{(x^2 + 1)^2 + (x^2 - 1)} \, dx \]

\[= \int_{2}^{3} \frac{2x^3 \, dx}{(x^2 + 1)^2} + \int_{2}^{3} \frac{dx}{x^2 - 1} \]

\[= I_1 + \frac{1}{2} \log \left| \frac{x - 1}{x + 1} \right|_{2}^{3} \]

\[= I_1 + \frac{1}{2} \left(\log \frac{1}{3} - \log \frac{1}{2} \right) \]

where \(I_1 = \int_{2}^{3} \frac{x^2}{(x^2 + 1)^2} (2x) \, dx \)

Put \(x^2 + 1 = t \), \(2x \, dx = dt \)

\[\therefore I_1 = \int_{3}^{5} \frac{t - 1}{t^2} \, dt = \left(\log |t| + \frac{1}{t} \right)_{3}^{5} \]

\[= \log 2 - \frac{1}{10} \]

Thus, \(I = \frac{1}{2} \log 6 - \frac{1}{10} \)
Type 2 - Here special properties of Definite Integrals are used

Let us see the list of properties

\[\int_a^b f(x) \, dx = \int_a^b f(t) \, dt \]
\[\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx . \text{ In particular, } \int_a^a f(x) \, dx = 0 \]
\[\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx \]
\[\int_a^b f(x) \, dx = \int_a^{a+b-x} f(x) \, dx \]
\[\int_0^a f(x) \, dx = \int_0^a f(a-x) \, dx \]
\[\int_0^{2a} f(x) \, dx = \int_0^a f(x) \, dx + \int_0^a f(2a-x) \, dx \]
\[\int_0^{2a} f(x) \, dx = 2 \int_0^a f(x) \, dx, \text{ if } f(2a-x) = f(x) \text{ and } \]
\[0 \text{ if } f(2a-x) = -f(x) \]
(i) \[\int_{-a}^a f(x) \, dx = 2 \int_0^a f(x) \, dx, \text{ if } f \text{ is an even function, i.e., } f(-x) = f(x). \]
(ii) \[\int_{-a}^a f(x) \, dx = 0, \text{ if } f \text{ is an odd function, i.e., } f(-x) = -f(x). \]

The property of Modulus

\[\left| \int_a^b f(x) \, dx \right| < \int_a^b |f(x)| \, dx \]

An Example to start the discussion

\[\int_{19}^{\sin \frac{x}{10 + x^8}} \, dx \text{ is} \]

The absolute value of

(a) less than 10^{-7}
(b) more than 10^{-7}
(c) less than 10^{-6}
(d) more than 10^{-6}
Solution

\[
(a, c) = \int_0^1 \sin x \, dx \leq \int_0^1 \frac{\sin x}{1 + x^8} \, dx
\]

\[
\therefore |f(x)| \leq \int |f(x)| \, dx
\]

\[
\int \frac{dx}{1 + x^8} < \int \frac{dx}{x^8}
\]

\[
\int \frac{dx}{10x^8} < \int \frac{dx}{10^8}
\]

\[
\frac{x^{10}}{10^8} = \frac{10^8 (19 - 10)}{10^8} = 9 \times 10^{-8} < 9 \times 10^{-8} < 10^{-7}
\]

Again, \(\cdot \cdot \times 10^7 > 10^6 \Rightarrow 10^{-7} < 10^{-6} \)

\(\therefore \) given integral is \(< 10^{-6} \)

If the function \(f(x) \) increases and has a concave graph in the interval \([a, b]\), then

\[
(b - a) f(a) < \int_a^b f(x) \, dx < (b - a) \frac{f(a) + f(b)}{2}
\]

If the function \(f(x) \) increases and has a convex graph in the interval \([a, b]\), then

\[
(b - a) \frac{f(a) + f(b)}{2} < \int_a^b f(x) \, dx < (b - a) f(b)
\]
Example - 2.1 - Solve \(\int_0^\frac{\pi}{2} \cos^2 x \, dx \)

As indefinite integral when we solve this we express \(\cos^2 x \) as \(\cos 2x \) form

But with limits 0 to \(\pi/2 \) we better use

\[
I = \int_0^{\frac{\pi}{2}} \cos^2 x \, dx
\]

\[
\Rightarrow I = \int_0^{\frac{\pi}{2}} \cos^2 \left(\frac{\pi}{2} - x \right) \, dx
\]

\[
\Rightarrow I = \int_0^{\frac{\pi}{2}} \sin^2 x \, dx
\]

Adding (1) and (2) we get

\[
2I = \int_0^{\frac{\pi}{2}} (\sin^2 x + \cos^2 x) \, dx
\]

\[
\Rightarrow 2I = \int_0^{\frac{\pi}{2}} 1 \, dx
\]

\[
\Rightarrow 2I = \left[x \right]_0^{\frac{\pi}{2}}
\]

\[
\Rightarrow 2I = \frac{\pi}{2}
\]

\[
\Rightarrow I = \frac{\pi}{4}
\]

Example - 2.2 - Is one of the most common questions, asked Lakhs of times in all sorts of school and entrance exams.

\[
\int_0^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx
\]

Find \(\frac{\pi}{4} \)

Modification of this problem is to divide the Denominator by \(\sqrt{\sin x} \) bringing the numerator down (below Denominator). So the denominator becomes \(1 + \sqrt{\cot x} \)

Also the problem could have been or without roots

\[
\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos}}{\sqrt{\cos} + \sqrt{\sin x}} \, dx
\]

\[
\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} \, dx
\]
Or The approach to solve these remain the same

\[\int_{0}^{\pi} \frac{\cos x}{\sin x + \cos x} \, dx \]

\[\int_{0}^{\pi} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \quad - \{1\} \]

Let \[I = \int_{0}^{\pi} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \]

\[\Rightarrow I = \int_{0}^{\pi} \frac{\sqrt{\sin \left(\frac{\pi}{2} - x \right)}}{\sqrt{\sin \left(\frac{\pi}{2} - x \right)} + \sqrt{\cos \left(\frac{\pi}{2} - x \right)}} \, dx \]

\[\Rightarrow I = \int_{0}^{\pi} \frac{\sqrt{\cos}}{\sqrt{\cos} + \sqrt{\sin}} \, dx \quad - \{2\} \]

Adding (1) and (2), we obtain

\[2I = \int_{0}^{\pi} \frac{\sqrt{\sin x + \sqrt{\cos x}}}{\sqrt{\sin x + \sqrt{\cos x}}} \, dx \]

\[\Rightarrow 2I = \int_{0}^{\pi} 1 \, dx \]

\[\Rightarrow 2I = \left[x \right]_{0}^{\pi} \]

\[\Rightarrow 2I = \frac{\pi}{2} \]

\[\Rightarrow I = \frac{\pi}{4} \]

Example - 2.3 - Not only \(\sin x \) or \(\sqrt{\sin x} \) but \(\sin^{3/2} x \) or \(\sin^{5/2} x \) or \(\sin^{(2n+1)/2} x \)

meaning \(\cos \) or \(\sin^{(\text{Odd Natural Number})/2} x \) will have the same approach

Let \[I = \int_{0}^{\pi/2} \frac{\sin^{3/2} x}{\sin^2 x + \cos^2 x} \, dx \quad - \{1\} \]

\[\Rightarrow I = \int_{0}^{\pi/2} \frac{\sin^{3/2} \left(\frac{\pi}{2} - x \right)}{\sin^2 \left(\frac{\pi}{2} - x \right) + \cos^2 \left(\frac{\pi}{2} - x \right)} \, dx \]

\[\Rightarrow I = \int_{0}^{\pi/2} \frac{\cos^{3/2} x}{\sin^2 x + \cos^2 x} \, dx \quad - \{2\} \]

Adding (1) and (2), we obtain

\[2I = \int_{0}^{\pi/2} \frac{\sin^{3/2} x + \cos^{3/2} x}{\sin^2 x + \cos^2 x} \, dx \]

\[\Rightarrow 2I = \left[x \right]_{0}^{\pi/2} \]

\[\Rightarrow 2I = \frac{\pi}{2} \]

\[\Rightarrow I = \frac{\pi}{4} \]
If \(I = \int_{\pi/6}^{\pi/3} \frac{dx}{1 + \sqrt{\tan x}} \), then \(I \) equals

(a) \(\frac{\pi}{12} \)
(b) \(\frac{\pi}{6} \)
(c) \(\frac{\pi}{4} \)
(d) \(\frac{\pi}{3} \)

Ans. (a)

Solution We can write

\[
I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos x}}{\cos x + \sqrt{\sin x}} \, dx \tag{1}
\]

Using \(\int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \), we can write

\[
I = \int_{\pi/6}^{\pi/3} \frac{\sqrt{\cos (\pi/2 - x)}}{\cos (\pi/2 - x) + \sqrt{\sin (\pi/2 - x)}} \, dx
= \int_{\pi/6}^{\pi/3} \frac{\sqrt{\sin x}}{\sqrt{\sin x + \sqrt{\cos x}}} \, dx
\]

Adding (1) and (2), we get

\[
2I = \int_{\pi/6}^{\pi/3} dx = x \bigg|_{\pi/6}^{\pi/3} = \frac{\pi}{6}
\]

\[\Rightarrow I = \pi/12\]
Example - 2.4 -

Solve \[\int_0^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) \, dx \]

Let \(I = \int_0^{\frac{\pi}{2}} (2 \log \sin x - \log \sin 2x) \, dx \)

\[\Rightarrow I = \int_0^{\frac{\pi}{2}} \{2 \log \sin x - \log (2 \sin x \cos x)\} \, dx \]

\[\Rightarrow I = \int_0^{\frac{\pi}{2}} \{2 \log \sin x - \log \sin x \, \log \cos x - \log 2\} \, dx \]

\[\Rightarrow I = \int_0^{\frac{\pi}{2}} \{\log \sin x \, \log \cos x - \log 2\} \, dx \quad - (1) \]

Applying \(\int_0^{a} f(x) \, dx = \int_0^{a} f(a - x) \, dx \)

we get

\[\Rightarrow I = \int_0^{\frac{\pi}{2}} \{\log \cos x \, \log \sin x - \log 2\} \, dx \quad (2) \]

Adding (1) and (2), we obtain

\[2I = \int_0^{\frac{\pi}{2}} (-\log 2 - \log 2) \, dx \]

\[\Rightarrow 2I = -2 \log 2 \int_0^{\frac{\pi}{2}} 1 \, dx \]

\[\Rightarrow I = -\log 2 \left[\frac{\pi}{2} \right] \]

\[\Rightarrow I = \frac{\pi}{2} (-\log 2) \]

\[\Rightarrow I = \frac{\pi}{2} \left[\log \frac{1}{2} \right] \]

\[\Rightarrow I = \frac{\pi}{2} \log \frac{1}{2} \]
Example - 2.5 -

\[\int_{\pi/2}^{\pi} \sin^2 x \, dx \]

Solve

\[\sin^2 x \] is an even function. Recall if we replace \(x \) with \(-x\) and then get the same value as the original function then it is even function. \(\sin^2 (-x) = \sin^2 x \)

So we apply

\[\int_{0}^{\pi} f(x) \, dx = 2 \int_{0}^{\pi/2} f(x) \, dx \]

\[I = 2 \int_{0}^{\pi} \sin^2 x \, dx \]

\[= 2 \int_{0}^{\pi/2} \frac{1 - \cos 2x}{2} \, dx \]

\[= \int_{0}^{\pi/2} (1 - \cos 2x) \, dx \]

\[= \left[x - \sin 2x \right]_{0}^{\pi/2} \]

\[= \frac{\pi}{2} \]

So result is \(2 \times \frac{\pi}{4} = \frac{\pi}{2} \)

We could have also done

\[I = \int_{0}^{\pi} \cos^2 x \, dx \]

\[\Rightarrow I = \int_{0}^{\pi} \cos^2 \left(\frac{\pi}{2} - x \right) \, dx \]

And then as before

\[2I = \int_{0}^{\pi} \left(\sin^2 x + \cos^2 x \right) \, dx \]

\[\Rightarrow 2I = \int_{0}^{\pi} 1 \, dx \]

\[\Rightarrow 2I = \left[x \right]_{0}^{\pi} \]

\[\Rightarrow 2I = \frac{\pi}{2} \]

\[\Rightarrow I = \frac{\pi}{4} \]

So result is \(2 \times \frac{\pi}{4} = \frac{\pi}{2} \)
But ideally I would have solved these problems by using gamma function

show that

\[\int_0^{\frac{\pi}{2}} \sin^m x \cos^n x \, dx = \frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{n+1}{2}\right)}{2^{m+n+2}} \]

where \(m \) and \(n \) are integers.

Proof

Case I. When \(n = 0 \). Then

\[\int_0^{\frac{\pi}{2}} \sin^m x \cos^n x \, dx = \int_0^{\frac{\pi}{2}} \sin^m x \, dx \]

\[= \left[-\frac{\sin^{m-1} x \cos x}{m} \right]_0^{\frac{\pi}{2}} + \frac{m-1}{m} \int_0^{\frac{\pi}{2}} \sin^{m-2} x \, dx \]

\[= \frac{m-1}{m} \int_0^{\frac{\pi}{2}} \sin^{m-2} x \, dx \]

Learn more about Gamma function at

https://zookeepersblog.wordpress.com/gamma-function-integral-calculus/

So

\[\int_0^{\frac{\pi}{2}} \sin^2 x \, dx = \int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{\Gamma\left(\frac{2+1}{2}\right) \Gamma\left(\frac{0+1}{2}\right)}{2^{2+0+2}} \]

Recall \(\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} \)

\[\Gamma\left(\frac{3}{2}\right) = \frac{1}{2} \Gamma\left(\frac{1}{2}\right) \] because \(\Gamma(n+1) = n\Gamma(n) \) \(3/2 \) is (\(1/2 + 1 \)) so \(n = 1/2 \)

\[\Gamma\left(\frac{2}{2}\right) = 1 \] because \(\Gamma(1) = 1 \) So Integral = \(\left(\frac{1}{2}\right) \sqrt{\pi} \left(\Gamma\left(\frac{1}{2}\right) \right) / 2 = \pi / 4 \)
Example - 2.6 - These type of problems are known as removal of x

\[
\int_0^\pi \frac{x \, dx}{1 + \sin x}
\]

Solve

Let \(I = \int_0^\pi \frac{x \, dx}{1 + \sin x} \) - (1)

\[
\Rightarrow I = \int_0^\pi \frac{(\pi - x) \, dx}{1 + \sin(\pi - x)}
\]

\[
\Rightarrow I = \int_0^\pi \frac{(\pi - x) \, dx}{1 + \sin x} \] - (2)

Adding (1) and (2)

\[
2I = \int_0^\pi \frac{\pi \, dx}{1 + \sin x}
\]

\[
\Rightarrow 2I = \pi \int_0^\pi \frac{(1 - \sin x) \, dx}{(1 + \sin x)(1 - \sin x)}
\]

\[
\Rightarrow 2I = \pi \int_0^\pi \frac{1 - \sin x}{\cos^2 x} \, dx
\]

\[
\Rightarrow 2I = \pi \left\{ \sec^2 x - \tan x \sec x \right\}_0^\pi
\]

\[
\Rightarrow 2I = \pi \left[\tan x - \sec x \right]_0^\pi
\]

\[
\Rightarrow I = \pi
\]
Example - 2.7 -

\[\int_{\frac{\pi}{2}}^{\pi} \sin^7 x \, dx \]

Solve

\[\sin^7 x \text{ is an odd function. Because } \sin^7 (-x) = -\sin^7 x \]

So we use \(\int_{0}^{a} f(x) \, dx = 0 \)

So answer is 0

-

Example - 2.8 -

\[\int_{0}^{2\pi} \cos^5 x \, dx \]

Solve

Let \(I = \int_{0}^{2\pi} \cos^5 x \, dx \) \hspace{1cm} ...(1)

\[\cos^5 (2\pi - x) = \cos^5 x \]

We have

\[\int_{0}^{2\pi} f(x) \, dx = 2 \int_{0}^{\pi} f(x) \, dx \text{ if } f(2\pi - x) = f(x) \]

\[= 0 \text{ if } f(2\pi - x) = -f(x) \]

\[\therefore I = 2 \int_{0}^{\pi} \cos^5 x \, dx \]

\[\Rightarrow I = 2(0) = 0 \quad \left[\cos^5 (\pi - x) = -\cos^5 x \right] \]

-

Example - 2.9 -

\[\int_{\frac{\pi}{2}}^{\pi} \frac{\sin x - \cos x}{1 + \sin x \cos x} \, dx \]

Solve
Adding (1) and (2)

\[2I = \int_{0}^{\pi} \frac{\pi - x}{1 + \sin x \cos x} \, dx \]
\[\Rightarrow I = 0 \]

Example - 2.10 -

Solve

\[\int_{0}^{\pi} \log (1 + \cos x) \, dx \]

Let \(I = \int_{0}^{\pi} \log (1 + \cos x) \, dx \) -(1)

\[\Rightarrow I = \int_{0}^{\pi} \log (1 + \cos (\pi - x)) \, dx \]
\[\Rightarrow I = \int_{0}^{\pi} \log (1 - \cos x) \, dx \) -(2)

Adding (1) and (2)
Adding (4) and (5) we get

\[2I = \int_{0}^{\pi} (\log(1 + \cos x) + \log(1 - \cos x)) \, dx \]
\[\Rightarrow 2I = \int_{0}^{\pi} \log(1 - \cos^2 x) \, dx \]
\[\Rightarrow 2I = \int_{0}^{\pi} \log \sin^2 x \, dx \]
\[\Rightarrow 2I = 2 \int_{0}^{\pi} \log \sin x \, dx \]
\[\Rightarrow I = \int_{0}^{\pi} \log \sin x \, dx \quad \text{-(3)} \]

\[\sin(\pi - x) = \sin x \]
\[\therefore I = 2 \int_{0}^{\pi/2} \log \sin x \, dx \quad \text{-(4)} \]

\[\Rightarrow I = 2 \int_{0}^{\pi/2} \log \sin \left(\frac{\pi}{2} - x\right) \, dx = 2 \int_{0}^{\pi/2} \log \cos x \, dx \quad \text{-(5)} \]

Adding (4) and (5) we get

\[2I = 2 \int_{0}^{\pi/2} (\log \sin x + \log \cos x) \, dx \]
\[\Rightarrow I = \int_{0}^{\pi/2} (\log \sin x + \log \cos x + \log 2 - \log 2) \, dx \]
\[\Rightarrow I = \int_{0}^{\pi/2} (\log 2 \sin x \cos x - \log 2) \, dx \]
\[\Rightarrow I = \int_{0}^{\pi/2} \log 2 \sin 2x \, dx - \int_{0}^{\pi/2} \log 2 \, dx \]

Let \(2x = t \) so \(2 \, dx = dt \) when \(x = 0 \) \(t = 0 \) and when \(x = \pi/2 \) \(t = \pi \)

\[\therefore I = \frac{1}{2} \int_{0}^{\pi} \log t \, dt - \frac{\pi}{2} \log 2 \]
\[\Rightarrow I = \frac{1}{2} \left[t - \pi \log 2 \right]_{0}^{\pi} \]
\[\Rightarrow I = \frac{\pi}{2} - \frac{\pi}{2} \log 2 \]
\[\Rightarrow \frac{\pi}{2} = -\frac{\pi}{2} \log 2 \]
\[\Rightarrow I = -\pi \log 2 \]
Example - 2.11 -

\[\int \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a-x}} \, dx \]

Solve \[I = \int \frac{\sqrt{a-x}}{\sqrt{a-x} + \sqrt{x}} \, dx \]

Add with

\[2I = \int \frac{\sqrt{x} + \sqrt{a-x}}{\sqrt{x} + \sqrt{a-x}} \, dx \]

\[\Rightarrow 2I = \int_{0}^{a} 1 \, dx \]

\[\Rightarrow 2I = [x]_{0}^{a} \]

\[\Rightarrow 2I = a \]

\[\Rightarrow I = \frac{a}{2} \]

Similarly

\[I = \int_{3}^{5} \frac{\sqrt{x}}{\sqrt{8-x} + \sqrt{x}} \, dx \] then \(I \) equals

(a) 1
(b) 2
(c) 3
(d) 3.5

Ans. (a)

Solution Using the property

\[\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \]

we can write

\[I = \int_{3}^{5} \frac{\sqrt{8-x}}{\sqrt{x} + \sqrt{8-x}} \, dx \]

Adding

\[2I = \int_{3}^{5} \frac{\sqrt{x} + \sqrt{8-x}}{\sqrt{x} + \sqrt{8-x}} \, dx = \int_{3}^{5} \sqrt{x} \, dx = x|_{3}^{5} \]

\[\Rightarrow 2I = 5 - 3 = 2 \Rightarrow I = 1. \]
AIEEE (now known as IIT-JEE main) - 2002

\[
\int_{-\pi}^{\pi} \frac{2x(1 + \sin x)}{1 + \cos^2 x} \, dx \quad \text{is}
\]

(a) \(\frac{\pi^2}{4}\) \quad (b) \(\pi^2\) \quad (c) \(0\) \quad (d) \(\frac{\pi}{2}\)

(b) \(2 \int_{-\pi}^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx + 2 \int_{-\pi}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx\)

\[= 0 + 2 \int_{-\pi}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx\]

\[= 2 \times 2 \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx\]

\[= 4 \int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx\]

\[= 4 \times \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx\]

\[\text{by using } \int_{0}^{\pi} x f(\sin x) \, dx = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \, dx\]

\[= 4 \times \frac{\pi}{2} \times \int_{0}^{\pi} \frac{\sin x}{1 + \cos^2 x} \, dx\]

\[= 4\pi \left(\tan^{-1} \cos x\right)_{0}^{\pi} \quad \text{(By putting } \cos x = t)\]

\[= 4\pi \times \left(\frac{\pi}{4} - 0\right)\]

\[= \pi^2\]
AIEEE (now known as IIT-JEE main) - 2005

The value of \(\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} \, dx \), \(a > 0 \), is

(a) \(\pi/2 \)
(b) \(a\pi \)
(c) \(2\pi \)
(d) \(\pi/a \)

Solution

(a) : Let \(f(x) = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} \, dx \) \((a > 0) \) ... (1)

\[f(x) = \int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^{x}} \, dx \]

\[\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \]

\[f(x) = \int_{-\pi}^{\pi} \frac{a^x \cos^2 x}{1 + a^{x}} \, dx \] ... (2)

\[2f(x) = \int_{-\pi}^{\pi} \cos^2 x \, dx = 2\int_{0}^{\pi/2} \cos^2 x \, dx \]

\[= 2 \times 2 \int_{0}^{\pi/2} \cos^2 x \, dx, \quad 2f(x) = 4 \times \frac{1}{2} \times \frac{\pi}{2} \]

\[\text{By using} \int_{0}^{\pi/2} \sin^n x \, dx = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \ldots \frac{1}{2} \times \frac{\pi}{2}, \text{if } n \text{ is even} \]

\[f(x) = \frac{\pi}{2} \]

Spoon feed with \(\sin^2 x \)

If \(I = \int_{-\pi}^{\pi} \frac{\sin^2 x}{1 + a^x} \, dx \)

\(a > 0 \), then \(I \) equals

(a) \(\pi \)
(b) \(\pi/2 \)
(c) \(a\pi \)
(d) \(a\pi/2 \)

Ans. (b)

Solution

As in Example 2,

\[I = \int_{-\pi}^{\pi} \frac{(\sin(-x))^2}{1 + a^{-x}} \, dx \]

\[= \int_{-\pi}^{\pi} \frac{a^x \sin^2 x}{1 + a^{-x}} \, dx \] (2)
Adding (1) and (2)

\[2I = \int_{-\pi}^{\pi} \sin^2 x \, dx \]
\[= 2\int_{0}^{\pi} \sin^2 x \, dx \]
\[= \int_{0}^{\pi} (1 - \cos 2x) \, dx \]
\[= \left(x - \frac{\sin 2x}{2} \right)_{0}^{\pi} = \pi \]
\[\Rightarrow I = \frac{\pi}{2}. \]

Walli's Formula

If \(n \) is a +ve integer then \(\int_{0}^{\pi/2} \sin^n x \, dx = \int_{0}^{\pi/2} \cos^n x \, dx \) has the value

\[\frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \cdots \frac{2}{3} \] if \(n \) is odd

and the value

\[\frac{n-1}{n} \frac{n-3}{n-2} \frac{n-5}{n-4} \cdots \frac{3}{4} \frac{1}{2} \frac{\pi}{2} \] if \(n \) is even

Proof

Let

\[I_n = \int_{0}^{\pi/2} \sin^n x \, dx \]
\[= \int_{0}^{\pi/2} \sin^n \left(\frac{\pi}{2} - x \right) \, dx \]
\[= \int_{0}^{\pi/2} \cos^n x \, dx \]
\[= \left[\frac{\cos^{n-1} x \sin x}{n} \right]_{0}^{\pi/2} + \frac{n-1}{n} \int_{0}^{\pi/2} \cos^{n-2} x \, dx \]
\[= \frac{n-1}{n} I_{n-2} \]

\[\Rightarrow I_n = \frac{n-1}{n} I_{n-2} \quad \ldots \quad (1) \]

Replacing \(n \) by \(n - 2 \), we get

\[I_{n-2} = \frac{n-3}{n-2} I_{n-4} \quad \ldots \quad (2) \]

Putting the value of \(I_{n-2} \) from (2) in (1), we get

\[I_n = \frac{n-1}{n} \frac{n-3}{n-2} I_{n-4} \quad \ldots \quad (3) \]
Replace \(n \) by \(n - 4 \) in (1), we get
\[
I_{n-4} = \frac{n-5}{n-4} I_{n-6} \quad \ldots \quad (4)
\]

Putting the value of \(I_{n-4} \) from (4) in (3), we get
\[
I_n = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} I_{n-6}
\]

Proceeding in this manner, we see that two cases arise:

Case I. When \(n \) is odd, then
\[
I_n = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \ldots \frac{2}{3} \cdot I_1
\]

Now
\[
I_1 = \int_0^{\frac{\pi}{2}} \sin x \, dx
\]
\[
= (\cos x)|_0^{\frac{\pi}{2}}
\]
\[
= 1
\]
\[
\therefore \quad I_n = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \ldots \frac{2}{3}
\]

Case II. When \(n \) is even, then
\[
I_n = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \ldots \frac{1}{2} \cdot I_0
\]

Now
\[
I_0 = \int_0^{\frac{\pi}{2}} \sin^0 x \, dx
\]
\[
= (x)|_0^{\frac{\pi}{2}}
\]
\[
= \frac{\pi}{2}
\]
\[
\therefore \quad I_n = \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \frac{n-5}{n-4} \ldots \frac{1}{2} \cdot \frac{\pi}{2}
\]
AIEEE (now known as IIT-JEE main) - 2006

The value of the integral, \(\int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} \, dx \) is

(a) \(\frac{1}{2} \) (b) \(\frac{3}{2} \) (c) \(2 \) (d) \(1 \)

Solution - (b)

\[
\int_{a}^{b} \frac{f(x)}{f(a + b + x) + f(x)} \, dx = \int_{a}^{b} f(x) \, dx = \frac{b-a}{2}
\]

\[
\int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} \, dx = \frac{6-3}{2} = \frac{3}{2}
\]

AIEEE (now known as IIT-JEE main) - 2006

\[
\int_{-\pi/2}^{\pi/2} [(x + \pi)^3 + \cos^2(x + 3\pi)] \, dx \text{ is equal to}
\]

(a) \(\frac{\pi^4}{32} \) (b) \(\frac{\pi^4}{32} + \frac{\pi}{2} \) (c) \(\frac{\pi}{2} \) (d) \(\frac{\pi}{2} - 1 \)

Solution:

(c) : Let \(I = \int_{-\pi/2}^{\pi/2} [(x + \pi)^3 + \cos^2(x + 3\pi)] \, dx \)

Putting \(x + \pi = z \)

also \(x = -\frac{\pi}{2} \Rightarrow z = \frac{\pi}{2} \) and \(x = -\frac{3\pi}{2} \Rightarrow z = -\frac{\pi}{2} \)

\(\therefore \) \(dx = dz \)

and \(x + 3\pi = z + 2\pi \)

\(\therefore \) \(I = \int_{-\pi/2}^{\pi/2} [z^3 + \cos^2(2\pi + z)] \, dz \)

\(= 0 \) (an odd function) + \(\int_{0}^{\pi/2} \cos^2 z \, dz \)

\(= 0 + 2 \int_{0}^{\pi/4} \cos^2 z \, dz \)

using fact \(\int_{0}^{\pi/2} \sin^n x \, dx \)

\(= \left\{ \begin{array}{ll}
\frac{\pi}{2} & \text{if } n = 2m \\
\frac{\pi}{2} & \text{if } n = 2m + 1
\end{array} \right. \)

\(= \frac{\pi}{2} \)
Type 3 - Special Definite Integral Formulae

Great mathematicians proved and derived many interesting results. We have to know these results as of standard 12. Deriving all of these is not in course of IIT-JEE, or PU.

\[
\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi}
\]

\[
\int_{-\infty}^{\infty} x^2 e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}
\]

\[
\int_{-\infty}^{\infty} x^2 e^{-x^2} \, dx = \frac{3\sqrt{\pi}}{8}
\]

\[
\int_{-\infty}^{\infty} x^2 e^{-x^2} \, dx = \frac{\sqrt{\pi}}{4}
\]

Or say to scare you more

\[
\int_{0}^{\pi} \ln (a + b \cos x) \, dx = \pi \ln \left(\frac{a}{2} + \frac{\sqrt{a^2 - b^2}}{2} \right)
\]

\[
\int_{0}^{\pi} \ln (a^2 - 2ab \cos x + b^2) \, dx = \begin{cases} 2\pi \ln a, & a > b > 0 \\ 2\pi \ln b, & b > a > 0 \end{cases}
\]

\[
\int_{0}^{\pi/4} \ln (1 + \tan x) \, dx = \frac{\pi}{8} \ln 2
\]

\[
\int_{0}^{\pi/2} \sec x \ln \left(\frac{1 + b \cos x}{1 + a \cos x} \right) \, dx = \frac{1}{2} \left(b \cos^{-1} a - a \cos^{-1} b \right)
\]

\[
\int_{0}^{a} \ln \left(\frac{2 \sin x}{2} \right) \, dx = - \left(\frac{\sin a}{1^2} + \frac{\sin 2a}{2^2} + \frac{\sin 3a}{3^2} + \cdots \right)
\]
While the Indian toppers of IIT-JEE will know how to do these derivations are given at

https://zookeepersblog.wordpress.com/iit-jee-integral-calculus-indefinite-definite-integration-
skmclasses-south-bangalore-subhashish-sir/

Solve (This was there in the formula list above)

\[
\int_{0}^{\pi} \frac{\log (1 + \tan x)}{dx} \\ dx
\]

Let \(I = \int_{0}^{\pi} \log (1 + \tan x) \ dx \)

\[\therefore I = \int_{0}^{\pi} \log \left(1 + \tan \left(\frac{\pi}{4} - x\right)\right) \ dx \]

\[\Rightarrow I = \int_{0}^{\pi} \log \left\{1 + \frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4} \tan x}\right\} \ dx \]

\[\Rightarrow I = \int_{0}^{\pi} \log \left\{1 + \frac{1 - \tan x}{1 + \tan}\right\} \ dx \]

\[\Rightarrow I = \int_{0}^{\pi} \frac{2}{1 + \tan x} \ dx \]

\[\Rightarrow I = \int_{0}^{\pi} \log 2 \ dx \]
Type - 4 - Integration of a modulus function. To be done piece wise due to break or reversal of value(s) somewhere.

Example - 4.1 - Solve

Around $x = -2$ the value of $(x + 2)$ flips. Student can solve $x + 2 = 0$ to get $x = -2$

In some cases there will be a Quadratic function inside the modulus. In those cases there may be two separate values around which the value of the expression flips from positive to negative, or vice versa. These are the real roots of the Quadratic Expression. If the roots of the Quadratic expression are imaginary then the expression is either positive or negative for all values of x

So $|x + 2| = x + 2$ for all $x > -2$ or rather right side of -2 (Better written as $-2 < x$, as per number line)

And for $x < -2$ $|x + 2| = -(x + 2) = -x - 2$ This ensures that $|x + 2|$ is always positive

Thus the integral has to be split from -5 till -2 [meaning -5 till less than -2 or $-2 - \delta$ where δ is very small positive number that tends to 0 (zero). Mathematically we write $\lim_{\delta \rightarrow 0}$]

While the other part will be -2+ to 5 [meaning -2+δ till 5 where δ is very small positive number that tends to 0 (zero).]

So we have the solution as

\[I = \int_{-5}^{-2} -(x+2)dx + \int_{-2}^{5} (x+2)dx \]

\[I = \left[\frac{x^2}{2} + 2x \right]_{-5}^{5} - \left[\frac{x^2}{2} + 2x \right]_{-2}^{5} \]

\[= \left[\frac{(-2)^2}{2} + 2(-2) - \frac{(-5)^2}{2} - 2(-5) \right] + \left[\frac{(5)^2}{2} + 2(5) - \frac{(-2)^2}{2} - 2(-2) \right] \]

\[= \left[\frac{-24}{2} + 2(-2) - \frac{25}{2} + 10 - 2 + 4 \right] \]

\[= -\frac{24}{2} - 10 + \frac{25}{2} + 10 - 2 + 4 \]

\[= 29 \]
Example - 4.2 - Try another one where modulus flips around 5

\[\int_2^5 |x - 5| \, dx \]

Solve

\[X - 5 \leq 0 \text{ in } [2, 5] \quad \text{and} \quad x - 5 \geq 0 \text{ in } [5, 8], \] thus

\[I = \int_2^5 (x - 5) \, dx + \int_5^8 (x - 5) \, dx \]

\[= \left[\frac{x^2}{2} - 5x \right]_2^5 + \left[\frac{x^2}{2} - 5x \right]_5^8 \]

\[= \left[\frac{25}{2} - 25 - 10 \right] + \left[32 - 40 - \frac{25}{2} + 25 \right] \]

\[= 9 \]

Spoon feed

If \(I = \int_{-3}^{2} (lx + 11 + lx + 2l + lx - 1l) \, dx \), then

\[I \text{ equals} \]

(a) \(\frac{31}{2} \)

(b) \(\frac{35}{2} \)

(c) \(\frac{37}{2} \)

(d) \(\frac{39}{2} \)

Ans. (a)

Solution

We can write

\[I = I_1 + I_2 + I_3 \]

where \(I_1 = \int_{-3}^{2} lx + 11 \, dx \) etc.

Put \(x + 1 = t \), so that

\[I_1 = \int_{-3}^{3} lt \, dt = \int_{-2}^{0} (-t) \, dt + \int_{0}^{3} t \, dt \]

\[= -\frac{1}{2} r^2 \left[\frac{t^2}{2} \right]_{-2}^{0} + \frac{1}{2} r^2 \left[\frac{t^2}{2} \right]_{0}^{3} = \frac{13}{2} \]

Similarly, \(I_2 = I_3 = \frac{9}{2} \)

Thus,

\[I = \frac{31}{2}. \]
Example - 4.3 - Try to integrate modulus of Quadratic function

Let us cook the Quadratic $Q(x)$ such that it has roots 1 and 7

So $Q(x)$ will be $(x - 1)(x - 7) = x^2 - 8x + 7$

The graph will be

It is obvious that $Q(x)$ is +ve when x is less than 1 or when x is greater than 7

$Q(x)$ is negative when x is in between 1 or 7 ($1 < x < 7$)

Now if we need to find $\int_{-10}^{11} |Q(x)| \, dx$, then we have to split from -10 to 1 then 1 to 7 and 7 to 11

So

\[
\int_{-10}^{1} (x^2 - 8x + 7) \, dx + \int_{1}^{7} (x^2 - 8x + 7) \, dx + \int_{7}^{11} (x^2 - 8x + 7) \, dx
\]

If the Quadratic function has imaginary roots $b^2 < 4ac$ (say $b = 2$, $a = 3$ and $c = 4$)

It will be above x axis always (a being positive)

$Q(x) = 3x^2 + 2x + 4$ which will have a graph of

So if we have to integrate from any lower limit to any higher limit of $|3x^2 + 2x + 4|$ if will be straight away done by integrating $3x^2 + 2x + 4$
AIEEE (now known as IIT-JEE main) - 2002

\[
\int_{-\pi}^{\pi} |\sin x| \, dx \quad \text{(d)}
\]

\[
= \int_{0}^{\pi} |\sin x| \, dx - \int_{0}^{\pi} |\sin x| \, dx
\]

\[
= 10 \times 2 - 1 \times 2 = 18
\]

Using period of \(|\sin x| = \pi\)

(A) 20 (B) 8 (C) 10 (D) 18

AIEEE (now known as IIT-JEE main) - 2004

The value of \(\int_{-2}^{3} |1-x^2| \, dx\) is

(a) \(\frac{7}{3}\) (b) \(\frac{14}{3}\) (c) \(\frac{28}{3}\) (d) \(\frac{1}{3}\)

The value of the Quadratic flips around -1 and 1

\[
(c) : \int_{-2}^{3} |1-x^2| \, dx = \int_{-2}^{3} |(1-x)(1+x)| \, dx
\]

Putting \(1-x^2 = 0\) \(\therefore x = \pm 1\)

Points \(-2, -1, 1, 3\)

\[
|1-x^2| = \begin{cases} 1-x^2 & \text{if } |x|<1 \\ 1-x^2 & \text{if } x<-1 \text{ and } x>1 \end{cases}
\]

\[
\Rightarrow \int_{-2}^{3} |(1-x^2)| \, dx
\]

\[
= \int_{-2}^{-1} (x^2-1) \, dx + \int_{-1}^{1} (1-x^2) \, dx + \int_{1}^{3} (x^2-1) \, dx
\]

\[
= \frac{4}{3} + 2 \left(\frac{2}{3} \right) + \frac{20}{3} = \frac{28}{3}
\]
Example - 4.4 -

If \(I = \int_{-\pi/6}^{\pi/6} \frac{x + 4x^5}{1 + \sin(|x| + \pi/6)} \, dx \), then \(I \)

equals

(a) \(4\pi \)
(b) \(2\pi + \sqrt{3} \)
(c) \(2\pi - \sqrt{3} \)
(d) \(4\pi + \sqrt{3} - \sqrt{3} \)

Ans. (a)

Solution As \(\frac{4x^5}{1 + \sin(|x| + \pi/6)} \) is an odd function, and

\(\frac{\pi}{1 - \sin(|x| + \pi/6)} \) is an even function, we get

\[I = 2\pi \int_{0}^{\pi/6} \frac{dx}{1 - \sin(x + \pi/6)} \]

Put \(x + \pi/6 = t, \, dx = dt \)

\[I = 2\pi \int_{0}^{\pi/6} \frac{dt}{1 - \sin t} = 2\pi \int_{0}^{\pi/6} \frac{1 - \sin t}{\cos^2 t} \, dt \]

\[= 2\pi \left[\tan t + \sec t \right]_{0}^{\pi/6} \]

\[= 2\pi \left[\left(\sqrt{3} + 2 \right) - \left(\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}} \right) \right] = 4\pi \]
Type 5 - Cousins of B functions

Beta functions are not directly in course. But in past 50 years, twice in IIT-JEE we had similar problems.

Let us start with an easy example - 5.1 - Which can be solved by

\[
\int_0^a f(x) \, dx = \int_0^a f(a-x) \, dx
\]

Find \(\int_0^1 x(1-x)^n \, dx \)

\[
\text{Let } I = \int_0^1 x(1-x)^n \, dx \\
\text{\therefore } I = \int_0^1 (1-x)(1-(1-x)) \, dx \\
= \int_0^1 (1-x)(1-x)^n \, dx \\
= \int_0^1 (1-x)^{n+1} \, dx \\
= \left[\frac{x^{n+1}}{n+1} - \frac{x^{n+2}}{n+2} \right]_0^1 \\
= \frac{1}{n+1} - \frac{1}{n+2}
\]

The same problem was asked in AIEEE (now known as IIT-JEE main) - 2003

So solving in another way for practice

The value of the integral \(I = \int_0^1 x(1-x)^n \, dx \) is

(a) \(\frac{1}{n+2} \) \quad (b) \(\frac{1}{n+1} - \frac{1}{n+2} \) \quad (c) \(\frac{1}{n+1} + \frac{1}{n+2} \) \quad (d) \(\frac{1}{n+1} \)
(b) \[\int_0^1 x(1-x)^n \, dx \]

Putting \(x = \sin^2 \theta \)

\[dx = 2 \sin \theta \cos \theta \, d\theta \]

and \(x = 0, \theta = 0 \)
\(x = 1, \theta = \pi/2 \)

\[\int_0^{\pi/2} x(1-x)^n \, dx = \int_0^{\pi/2} \sin^2 \theta \cos^{2n} \theta \, d\theta \]

\[= 2 \int_0^{\pi/2} \sin^3 \theta \cos^{2n+1} \theta \, d\theta \]

Using \[\int_0^{\pi/2} \sin^{2n+1} \theta \cos^{2n+1} \theta \, d\theta \]

\[= \frac{[(2n)(2n-2)...2][(2n)(2n-2)...2]}{(4n+2)(4n)(4n-2)...2} \]

\[:= 2 \int_0^{\pi/2} \sin^3 \theta \cos^{2n+1} \theta \, d\theta \]

\[= \frac{2[2 \times (2n)(2n-2)(2n-4)...4.2]}{(2n+4)(2n+2)(2n)(2n-2)...4.2} \]

\[= \frac{2 \times 2 \times 1}{(2n+4)(2n+2)} \]

\[= \frac{1}{(n+2)(n+1)} \]

\[= \frac{1}{n+1} - \frac{1}{n+2} \quad \text{(by partial fraction)} \]

This was simplified version of Gamma Function. In fact Beta Function and Gamma Function are related.
Example - 5.2 -

Solve

\[\int_0^2 x\sqrt{2-x} \, dx \]

Let \(I = \int_0^2 x\sqrt{2-x} \, dx \)

\[I = \int_0^2 (2-x)\sqrt{x} \, dx \]

\[= \int_0^2 \left(\frac{1}{2}x^2 - x^2 \right) \, dx \]

\[= \left[\frac{1}{2} \left(\frac{3}{2}x^2 \right) - \frac{5}{2}x^2 \right]_0^2 \]

\[= \left[\frac{4}{3} \cdot \frac{3}{2} - \frac{2}{5} \cdot \frac{5}{2} \right] \]

\[= \frac{4 \cdot 2\sqrt{2}}{3} - \frac{2 \cdot 4\sqrt{2}}{5} \]

\[= \frac{4\sqrt{2}}{3} - \frac{8\sqrt{2}}{5} \]

\[= \frac{40\sqrt{2} - 24\sqrt{2}}{15} \]

\[= \frac{16\sqrt{2}}{15} \]
Example - 5.3 -

Evaluate \(\int_{0}^{2a} x^{\frac{n}{2}} (2a - x)^{-\frac{1}{2}} \, dx \).

Solution:

\[
I = \int_{0}^{2a} x^{\frac{n}{2}} (2a - x)^{-\frac{1}{2}} \, dx
\]

Put \(x = 2a \sin^2 \theta \)

\[
\therefore \quad dx = 4a \sin \theta \cos \theta \, d\theta
\]

\[
= \int_{0}^{\frac{\pi}{2}} (2a)^{\frac{n}{2}} \sin^n \theta (2a - 2a \sin^2 \theta)^{-\frac{1}{2}} \cdot 4a \sin \theta \cos \theta \, d\theta
\]

\[
= \int_{0}^{\frac{\pi}{2}} (2a)^{\frac{n}{2}} \sin^n \theta \cdot (2a)^{-\frac{1}{2}} \cos \theta \cdot 4a \sin \theta \cos \theta \, d\theta
\]

\[
= (2a)^{\frac{n}{2}} \cdot 4a \cdot \int_{0}^{\frac{\pi}{2}} \sin^n \theta \, d\theta
\]

\[
= 64a^5 \left(\frac{9}{10} \cdot \frac{7}{8} \cdot \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \right) \frac{\pi}{2}
\]

| Using Walli's formula

\[
= \frac{63 \pi a^5}{8}
\]

Example - 5.4 -

If \(I_n = \int_{0}^{\pi} (a^2 - x^2)^n \, dx \), and \(n > 0 \), prove that

\[
I_n = \frac{2na^2}{2n+1} I_{n-1}.
\]

Solution: We have

\[
I_n = \int_{0}^{\pi} (a^2 - x^2)^n \, dx
\]

Put \(x = a \sin \theta \)

\[
\therefore \quad dx = a \cos \theta \, d\theta
\]

\[
= \int_{0}^{\frac{\pi}{2}} (a^2 - a^2 \sin^2 \theta)^n (a \cos \theta) \, d\theta
\]

\[
= a^{2n+1} \int_{\frac{\pi}{2}}^{0} \cos^{2n+1} \theta \, d\theta
\]

\[
= a^{2n+1} \left[\left(\frac{\cos^{2n} \theta \sin \theta}{2n+1} \right)^{\frac{\pi}{2}} \right]_{0}^{\frac{\pi}{2}} + \frac{2n}{2n+1} \int_{0}^{\frac{\pi}{2}} \cos^{2n-1} \theta \, d\theta
\]
Type 6 - Integration with greatest Integer functions (Also known as floor Function)

\[[2.3] = 2 \quad \text{while} \quad [2.9] \text{ is also } 2 \quad \text{as it is the Integer equal or below (lesser) than the number} \]

Note - most average students make an error in floor of negative number \([-6.3]\) is -7 as -7 is the integer just lesser than -6.(whatever)

Floor function is also written as \(\lfloor x \rfloor \)

Example - 6.1 -

The value of the integral \(\int_{0}^{2[x]} (x - [x]) \, dx \) is

(a) \([x]\) \qquad (b) \(\frac{1}{2} [x] \)
(c) \(3 [x] \) \qquad (d) \(2 [x] \)
Solution:

\[\int_{0}^{2} (x-[x]) \, dx = \int_{0}^{2} (x-[x]) \, dx \]

\[= 2[x] \int_{0}^{1} (x-[x]) \, dx \]

\[= 2[x] \left(\frac{x^2}{2} \right)_{0}^{1} - \int_{0}^{1} [x] \, dx \]

\[= 2[x] \left(\frac{1}{2} - 0 \right) = [x] \]

AIEEE (now known as IIT-JEE main) - 2002

\[\int_{0}^{\sqrt{2}} [x^2] \, dx \]

\(\text{is}\)

(a) \(2-\sqrt{2}\)

(b) \(2+\sqrt{2}\)

(c) \(\sqrt{2} - 1\)

(d) \(\sqrt{2} - 2\)

\(\text{(c)}: \int_{0}^{\sqrt{2}} [x^2] \, dx = \int_{0}^{1} [x^2] \, dx + \int_{1}^{\sqrt{2}} [x^2] \, dx = 0 + \int_{1}^{\sqrt{2}} 1 \, dx = \sqrt{2} - 1\)
Spoon feed

If \(I = \int_{0}^{1.7} [x^2] \, dx \), then \(I \) equals

(a) \(2.4 + \sqrt{2} \)
(b) \(2.4 - \sqrt{2} \)
(c) \(2.4 - \sqrt{2} \)
(d) \(2.4 - \sqrt{2} \)

Ans. (b)

Solution

Put \(x^2 = t \)

or \(x = \sqrt{t} \) or \(dx = \frac{1}{2\sqrt{t}} \, dt \)

\[I = \int_{0}^{2.89} \frac{[t]}{2\sqrt{t}} \, dt \]

\[= \int_{0}^{2.89} \frac{[t]}{2\sqrt{t}} \, dt + \int_{1}^{2} \frac{[t]}{2\sqrt{t}} \, dt + \int_{2}^{2.89} \frac{[t]}{2\sqrt{t}} \, dt \]

\[= \sqrt{[t]}_{0}^{2} + 2\sqrt{[t]}_{2}^{2.89} \]

\[= (\sqrt{2} - 1) + 2(1.7 - \sqrt{2}) \]

\[= 2.4 - \sqrt{2} \]
Example (Be Careful Just because [] is used do not assume greatest integer function. Solve the problem as greatest Integer only if it is told or as per context.)
As \(t^3 + t \cos t \) is an odd function

AIEEE (now known as IIT-JEE main) - 2006

The value of \(\int_1^a [x] f'(x) \, dx \), \(a > 1 \), where \([x]\) denotes the greatest integer not exceeding \(x \) is

(a) \(af([a]) - \{f(1) + f(2) + \ldots + f([a])\} \)

(b) \([a] f(1) - \{f(1) + f(2) + \ldots + f([a])\} \)

(c) \([a] f([a]) - \{f(1) + f(2) + \ldots + f(1) + f([a])\} \)

(d) \(af([a]) - \{f(1) + f(2) + \ldots + f(1) + f([a])\} \)
Solution:

(b) \[\int_a^b f(x)dx, \text{ say } \int_a^b f(x)dx = K \text{ such that } a > 1 \]

\[= \frac{\int f''(x)dx}{2} + \frac{\int f''(x)dx}{3} + \ldots + \sum_{K=0}^{a-1} K f''(x)dx + \frac{\int f''(x)dx}{K} + \int f''(x)dx \]

\[= f(b) - f(a) + 2[f(3) - f(2)] + 3[f(4) - f(3)] + \ldots \]

\[= (K - 1) [f(K) - f(K-1)] + K[f(a) - f(K)] \]

\[= - [f(1) + f(2) + \ldots + f(K)] + K f(a) \]

[\int_a^b f(x)dx - [f(1) + f(2) + \ldots + f([a])]]

Example - 6.2 -

If \[I = \int_{-1}^{1} \left(x^2 + \log \left(\frac{2 + x}{2 - x} \right) \right) dx \] (1)

where \([x]\) denotes the greatest integer \(\leq x\), then \(I\) equals

(a) -2 (b) -1
(c) 0 (d) 1

Ans. (c)

Solution As \(\log \left(\frac{2 + x}{2 - x} \right)\) is an odd function, we can write

\[I = \int_{-1}^{1} [x^2]dx + 0 \]

But for \(-1 < x < 1, 0 \leq x^2 < 1\) and thus, \([x^2] = 0\]

\[\therefore I = 0. \]
Example - 6.3 -

\[\int_{-2}^{2} [x^2] \, dx \] is equal to

(a) \(10 - 2\sqrt{3} - 2\sqrt{2} \)
(b) \(10 + 2\sqrt{3} - 2\sqrt{2} \)
(c) \(10 - 2\sqrt{3} + 2\sqrt{2} \)
(d) none of these

Solution

(a) \[\int_{-2}^{2} [x^2] \, dx = 2 \int_{0}^{2} [x^2] \, dx \quad [\because \text{integrand is even}] \]

\[= 2 \left[\int_{0}^{1} [x^2] \, dx + \int_{1}^{\sqrt{2}} [x^2] \, dx + \int_{\sqrt{2}}^{\sqrt{3}} [x^2] \, dx + \int_{\sqrt{3}}^{2} [x^2] \, dx \right] \]

\[\left[\because [x^2] = 0 \text{ if } 0 \leq x < 1; 1 \text{ if } 1 \leq x < \sqrt{2}; \right. \]
\[2 \text{ if } \sqrt{2} \leq x < \sqrt{3}; 3 \text{ if } \sqrt{3} \leq x < 2 \]

\[= 2 \left[1 \cdot 0 + \int_{1}^{\sqrt{2}} 1 \, dx + \int_{\sqrt{2}}^{\sqrt{3}} 2 \, dx + \int_{\sqrt{3}}^{2} 3 \, dx \right] \]

\[= 2 \left[0 + \frac{\sqrt{2}}{2} + 2 \frac{\sqrt{3}}{2} + 3 \frac{\sqrt{3}}{3} \right] \]

\[= \left(10 - 2\sqrt{3} - 2\sqrt{2} \right). \]
Type - 7 - Problems with functions, derivatives, with some given conditions etc. These are more common to be asked in various Engineering entrance exams.

AIEEE (now known as IIT-JEE main) - 2003

Let \(f'(x) \) be a function satisfying \(f''(x) = f(x) \) with \(f(0) = 1 \) and \(g(x) \) be a function that satisfies \(f(x) + g(x) = x^2 \). Then the value of the integral

\[
\frac{1}{0} \int f(x)g(x)\,dx
\]

is

(a) \(e + \frac{e^2}{2} - \frac{3}{2} \)

(b) \(e - \frac{e^2}{2} - \frac{3}{2} \)

(c) \(e + \frac{e^2}{2} + \frac{5}{2} \)

(d) \(e - \frac{e^2}{2} - \frac{5}{2} \)

\[
\int_0^1 f(x)g(x)\,dx = \int_0^1 e^x(x^2 - e^x)\,dx
\]

\[
= \int_0^1 x^2e^x\,dx - \int_0^1 e^{2x}\,dx
\]

\[
= [x^2e^x - 2xe^x + 2e^x]_0^1 - \left(\frac{e^{2x}}{2}\right)_0^1
\]

\[
= (e - 2) - \left(\frac{e^2 - 1}{2}\right)
\]

(b) : As \(f(x) = f'(x) \) and \(f(0) = 1 \)

\[
\Rightarrow \frac{f'(x)}{f(x)} = 1
\]

\[
\Rightarrow \log(f(x)) = x
\]

\[
\Rightarrow f(x) = e^x + k
\]

\[
\Rightarrow f(x) = e^x \text{ as } f(0) = 1
\]

Now \(g(x) = x^2 - e^x \)

Using \(f^n(x)e^x\,dx = e^x[f^n(x) - f_1^n(x) + f_2^n(x) + \ldots + (-1)^nf_n(x)] \)

where \(f_1, f_2, \ldots, f_n \) are derivatives of first, second, \ldots, \(n^{th} \) order.
Example - 7.1 -

Let \(g(x) = \int_{0}^{x} f(t) \, dt \), where \(f(t) \) is such that \(\frac{1}{2} \leq f(t) \leq 1 \) for \(t \in [0, 1] \) and \(0 \leq f(t) \leq \frac{1}{2} \) for \(t \in [1, 2] \). Then,

\[
\begin{align*}
(a) \quad & -\frac{3}{2} \leq g(2) \leq \frac{1}{2} \\
(b) \quad & \frac{3}{2} \leq g(2) \leq \frac{5}{2} \\
(c) \quad & \frac{1}{2} \leq g(2) \leq \frac{3}{2} \\
(d) \quad & \text{none of these}
\end{align*}
\]

Solution:

(c). We have,

\[
g(2) = \int_{0}^{2} f(t) \, dt = \int_{0}^{1} f(t) \, dt + \int_{1}^{2} f(t) \, dt \quad \ldots (i)
\]

Now, \(\frac{1}{2} \leq f(t) \leq 1 \), for \(t \in [0, 1] \)

and, \(0 \leq f(t) \leq \frac{1}{2} \), for \(t \in [1, 2] \)

\[
\Rightarrow \quad \frac{1}{2} (1 - 0) \leq \int_{0}^{1} f(t) \, dt \leq 1(1 - 0)
\]

and, \(0 (2 - 1) \leq \int_{1}^{2} f(t) \, dt \leq \frac{1}{2} (2 - 1) \)
AIEEE (now known as IIT-JEE main) - 2003

If \(f(y) = e^y \), \(g(y) = y \); \(y > 0 \) and

\[
F(t) = \int_{0}^{t} f(t - y)g(y)\,dy, \text{ then}
\]

(a) \(F(t) = e^t - (1 + t) \) \hspace{1cm} (b) \(F(t) = t e^t \)

(c) \(F(t) = t e^{-t} \)

(d) \(F(t) = 1 - e^t (1 + t) \).

(a) : From given \(F(t) = \int_{0}^{t} f(t - y)g(y)\,dy \)

\[
= \int_{0}^{t} e^{t-y}y\,dy \quad \text{(By replacing } y \rightarrow t - y \text{ in } f(y))
\]

\[
F(t) = -\int_{0}^{t} (t - \theta)e^\theta d\theta = \int_{0}^{t} (t - \theta)e^\theta d\theta
\]

\[
= (t e^\theta)_{0}^{t} - \left[(0 - 1) \right] e^\theta_{0}^{t}
\]

\[
= t(e^t - 1) - (t - 1)e^t - 1
\]

\[
= e^t(t - t + 1) - t - 1
\]

\[
= e^t - (t + 1)
\]
Example - 7.2 -

Let \(f(x) \) be a continuous function in \([-2, 2]\) such that
\[
\begin{align*}
 f(x) + f(y) &= f(x+y), \\
 \int_{-2}^{2} f(x) \, dx &=
\end{align*}
\]
(a) \(2 \int_{0}^{2} f(x) \, dx \)
(b) \(0 \)
(c) \(2f(2) \)
(d) none of these

Solution :

(b). Since, \(f(x) + f(y) = f(x+y) \)
Replace \(y \) by \(-x\)
\[
\begin{align*}
 f(x) + f(-x) &= f(x-x) \\
 f(x) + f(-x) &= f(0) \\
\end{align*}
\]
Also, using (1), we have
\[
\begin{align*}
 f(0) + f(0) &= f(0+0) = f(0) \\
 f(0) &= 0 \\
 f(-x) &= -f(x) \quad \{\text{using (2)}.\}
\end{align*}
\]
\[
\int_{-2}^{2} f(x) \, dx = 0
\]
AIEEE (now known as IIT-JEE main) - 2003

If \(f(a + b - x) = f(x) \), then \(\int_{a}^{b} f(x) \, dx \) is equal to

(a) \(\frac{a + b}{2} \int_{a}^{b} f(x) \, dx \)
(b) \(\int_{a}^{b} f(a + b - x) \, dx \)

(c) \(\frac{a + b}{2} \int_{a}^{b} f(a + b - x) \, dx \)

(d) \(\frac{a + b}{2} \int_{a}^{b} f(b - x) \, dx \).

AIEEE (now known as IIT-JEE main) - 2003

\[\frac{d}{dx} F(x) = \left(\frac{\sin x}{x} \right), \quad x > 0. \]

\[\Rightarrow \int_{1}^{3} e^{\sin x} \, dx = F(k) - F(1) \]

\[\Rightarrow \int_{1}^{3} e^{\sin x} \, dx = F(k) - F(1) \quad \text{where} \quad (x^3 = z) \]

\[\Rightarrow [F(z)]_{1}^{64} = F(k) - F(1) \]

\[\Rightarrow F(64) - F(1) = F(k) - F(1) \]

\[\Rightarrow k = 64 \]

AIEEE (now known as IIT-JEE main) - 2004

If \(\int_{0}^{\pi} f(\sin x) \, dx = A \int_{0}^{\pi/2} f(\sin x) \, dx \), then \(A \) is

(a) \(\pi/4 \)
(b) \(\pi \)
(c) 0
(d) \(2\pi \)

(b) \(\int_{0}^{\pi/2} x \cdot f(\sin x) \, dx = \int_{0}^{\pi/2} f(\sin x) \, dx \)

\begin{align*}
\Rightarrow \int_{0}^{\pi/2} x \cdot f(\sin x) \, dx &= \int_{0}^{\pi/2} f(\sin x) \, dx \\
\Rightarrow A \int_{0}^{\pi/2} f(\sin x) \, dx &= \frac{\pi}{2} \int_{0}^{\pi/2} f(\sin x) \, dx
\end{align*}

or \(A \int_{0}^{\pi/2} f(\sin x) \, dx = \frac{\pi}{2} \int_{0}^{\pi/2} f(\sin x) \, dx \)

\[\Rightarrow A \int_{0}^{\pi/2} f(\sin x) \, dx = \frac{\pi}{2} \int_{0}^{\pi/2} f(\sin x) \, dx \]

\[\Rightarrow A = \pi \]
AIEEE (now known as IIT-JEE main) - 2004

If \(f(x) = \frac{e^x}{1 + e^x} \), \(I_1 = \int_{f(a)}^{f(b)} xg\{x(1-x)\} \, dx \) and
\[
I_2 = \int_{f(a)}^{f(-a)} g\{x(1-x)\} \, dx,
\]
then the value of \(\frac{I_2}{I_1} \) is
(a) \(-1\) (b) \(-3\) (c) 2 (d) 1

Solution

(e) As \(f(x) = \frac{e^x}{1 + e^x} \)

\[
\Rightarrow f(a) = \frac{e^a}{1 + e^a} \quad \text{and} \quad f(-a) = \frac{e^{-a}}{1 + e^{-a}}
\]

\[
\Rightarrow f(-a) + f(a) = 1
\]

Now
\[
\int_{f(-a)}^{f(a)} x g\{x(1-x)\} \, dx = \frac{f(a)}{f(-a)} \int_{f(-a)}^{f(a)} (1-x)g\{(1-x)(x)\} \, dx
\]

\[
\Rightarrow \frac{I_2}{I_1} = 2
\]

AIEEE (now known as IIT-JEE main) - 2005

Let \(F : R \to R \) be a differentiable function having
\(f(2) = 6 \), \(f'(2) = \left\{ \frac{1}{48} \right\} \). Then \(\lim_{x \to 2} \frac{f(x)}{6} \int_{x-2}^{x^2} \frac{4t^3}{x-2} \, dt \)
equals
(a) 36 (b) 24 (c) 18 (d) 12

Solution

(c) : \(\lim_{x \to 2} \frac{f(x)}{6} \int_{x-2}^{x^2} \frac{4t^3}{x-2} \, dt \) \((0/0) \) form,

\[
= \lim_{x \to 2} \frac{f'(x) \times 4(f(x))^3}{1}
\]

\[
= 4f'(2) \times (f(2))^3 = \frac{1}{48} \times 4 \times 6 \times 6 \times 6 = 18
\]
AIEEE (now known as IIT-JEE main) - 2006

\[\int_0^\pi x f(\sin x) \, dx \text{ is equal to} \]

(a) \(\pi \int_0^\pi f(\cos x) \, dx \)
(b) \(\pi \int_0^\pi f(\sin x) \, dx \)
(c) \(\frac{\pi^2}{2} \int_0^\pi f(\sin x) \, dx \)
(d) \(\pi \int_0^\pi f(\cos x) \, dx \)

Solution:

(d) : Let \(I = \int_0^\pi x f(\sin x) \, dx \)

\[I = \int_0^\pi (\pi - x) f(\sin x) \, dx \]

using \(\int_a^b f(x) \, dx = \int_a^b f(a - x) \, dx \)

By (i) & (ii) on adding

\[I = \frac{\pi}{2} \int_0^\pi f(\sin x) \, dx = \frac{\pi}{2} \int_0^\pi f(\cos x) \, dx \]

[using \(\int_0^{\frac{\pi}{2}} f(x) \, dx = \frac{\pi}{2} \int_0^{\frac{\pi}{2}} f(\sin x) \, dx \text{ if } f(2\alpha - x) = f(x) \)]

\[= \frac{\pi}{2} \int_0^\frac{\pi}{2} f(\sin \left(\frac{\pi}{2} - x \right)) \, dx = \frac{\pi}{2} \int_0^\frac{\pi}{2} f(\cos x) \, dx \]

AIEEE (now known as IIT-JEE main) - 2007

Let \(F(x) = f(x) + f \left(\frac{1}{x} \right) \), where \(f(x) = \int_1^{1+t} \frac{x}{1+t} \, dt \)

Then \(F(x) \) equals

(a) 1 (b) 2 (c) \(\frac{1}{2} \) (d) 0

Solution:

(c) : \(F(x) = \int_1^{\frac{\ln t}{1+t}} \frac{1}{1+t} \, dt + \int_0^{\frac{1}{1+t}} \frac{\ln t}{1+t} \, dt \)

\[F(x) = \frac{x}{1} \left(\ln t + \frac{\ln t}{(1+t)t} \right) dt = \int_1^{\frac{1}{1+t}} \frac{\ln t}{t} \, dt = \frac{1}{2} (\ln x)^2 \]

\(F(x) = \frac{1}{2} \).
IIT - JEE 1998

If \(\int_{0}^{x} f(t) \, dt = x + \int_{x}^{1} t \cdot f(t) \, dt \), then the value of \(f(1) \) is:

(A) \(\frac{1}{2} \)
(B) 0
(C) 1
(D) \(-\frac{1}{2} \)

Solution :

\[\int_{0}^{x} f(t) \, dt = x + \int_{x}^{1} t \cdot f(t) \, dt, \]

Differentiating both sides w.r.t. \(x \), we get

\[f(x) \cdot 1 = 1 - x \cdot f(x) \cdot 1 \]

\[(1 + x) f(x) = 1 \]

\[f(x) = \frac{1}{1 + x} \]

\[f(1) = \frac{1}{2} \]

Thus \(f(1) = \frac{1}{2} \) is the answer

Example - 7.3 -

If \(f: R \rightarrow R \) is a continuous and differentiable function such that:

\[\int_{-1}^{x} f(t) \, dt + f'''(3) \int_{0}^{x} t^3 \, dt = \int_{1}^{x} t^3 \, dt \]

\[-f''(1) \int_{0}^{x} t^2 \, dt + f''(2) \int_{x}^{3} t \, dt, \]

then the value of \(f''(4) \) is

(a) \(48 - 8f''(1) - f''(2) \)
(b) \(48 + 8f''(1) - f''(2) \)
(c) \(48 - 8f''(1) + f''(2) \)
(d) \(48 + 8f''(1) + f''(2) \)
Example - 7.4 -

If f and g are two continuous functions being even and odd, respectively, then

$$\int_{-a}^{a} \frac{f(x)}{b^{-g(x)} + 1} \, dx$$

is equal to (a being any non-zero number and b is positive real number, $b \neq 1$)

(a) independent of f
(b) independent of g
(c) independent of both f and g
(d) none of these
Solution:

\[\int_{-\infty}^{\infty} x f(x) \, dx = \int_{0}^{\infty} f(x) \, dx + \int_{0}^{\infty} f(-x) \, dx \]

\[\int_{-\infty}^{\infty} \frac{f(x)}{b^x + 1} \, dx = \int_{0}^{\infty} \frac{f(x)}{b^x + 1} \, dx + \int_{0}^{\infty} \frac{f(-x)}{b^{-x} + 1} \, dx \]

\[= \int_{0}^{\infty} \frac{f(x)}{b^x + 1} \, dx + \int_{0}^{\infty} \frac{f(x)}{b^{-x} + 1} \, dx \]

\[= \int_{0}^{\infty} f(x) \, dx, \quad \text{which is independent of } g \]

Type - 8 - Differentiation of a Definite Integral

Often combined with L Hospital’s rule. Generally in most schools L Hospital’s form itself is avoided. Differentiation of Definite Integrals with functions as lower and upper Limits are known as Leibniz forms.

Learn more of Leibnitz forms at https://zookeepersblog.wordpress.com/leibnitz-rules-for-differentiation-of-integrals/

Leibniz Integral Rule

\[\frac{\partial}{\partial x} \left[\int_{a(x)}^{b(x)} f(x, y) \, dy \right] = \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} [f(x, y)] \, dy + \left[f(x, y) \frac{\partial y}{\partial x} \right]_{y=a(x)}^{b(x)} \]

While the easier version is

\[\frac{d}{dx} \int_{a(x)}^{b(x)} g(x) \, dx = g(b(x))E_2(x) - g(a(x))E_1(x) \]

Most problems of Standard 12 (Engineering entrance) are doable by the 2nd (easier) version of Leibnitz.
IIT-JEE 2004

If \(f(x) \) is differentiable and given as \(\int_0^{t^2} xf(x)\,dx = \frac{2}{3} t^3 \) then find \(f(4/25) \)

Solution - Differentiate both sides with respect to \(t \) (using Leibnitz 2\(^{nd}\) form)

\[t^2 f(t^2) \cdot 2t = \frac{2}{5} \cdot 5t^4 \]

Here if we put \(t = 2/5 \) we get \(t^2 = 4/25 \). So \(f(t^2) = t \) Thus \(f(4/25) = 2/5 \)

Example - 8.1 -

If \(F(x) = \int_3^x \left(2 + \frac{d}{dt} \cos t \right) \, dt \) then \(F'(\pi/6) \) is equal to

\(\text{Ans. (d)} \)

Solution

\[
F(x) = \int_3^x \left(2 - \sin t \right) \, dt \quad \text{so} \quad F'(x) = 2 - \sin x.
\]

Thus \(F'(\pi/6) = 2 - 1/2 = 3/2 \).

IIT-JEE 2007

Solve \(\lim_{x \to \pi/4} \int_2^{\sec^2 x} \frac{f(t)\,dt}{x^2 - \pi^2/10} \)

Solution: We can use L Hospital’s rule because it is 0/0 form. Numerator and Denominator will be differentiated separately as per Leibnitz 2\(^{nd}\) (simple) form

\[
= \lim_{x \to \pi/4} \frac{\frac{d}{dx} (\sec^2 x) \cdot \frac{d}{dx} (2 \sec x) \cdot \frac{d}{dx} (\sec x \cdot \tan x)}{2x} = \frac{8 \pi^2 (2 \pi)}{\pi}
\]
AIEEE (now known as IIT-JEE main) - 2003

\[
(b) : \lim_{x \to 0} \frac{(\tan t)^x}{x \sin x} = \lim_{x \to 0} \frac{\tan x^2}{x \sin x} = \lim_{x \to 0} \frac{\tan x^2}{x^2} \frac{1}{\sin x} = 1 \times 1 = 1
\]

The value of \(\lim_{x \to 0} \frac{x^2 \sec^2 t \, dt}{x \sin x} \) is

(a) 2 (b) 1 (c) 0 (d) 3

Note in this problem Differentiation was avoided. The numerator was actually integrated and then the problem was solved. But often the function given cannot be integrated. In those cases Leibnitz Differentiation is an option.

A beautiful problem from West Bengal JEE 2007

\[
\lim_{x \to \infty} \int_0^2 x e^{t^2} dt
\]

\[
(\text{a) } 0 \quad (\text{b) } 2 \quad (\text{c) } 1/2 \quad (\text{d) } \text{Infinity})
\]

Ans : (c)

Solution - We have

\[
\lim_{x \to \infty} \int_0^2 x e^{t^2} dt = \infty / \infty \text{ form}
\]

\[
\lim_{x \to \infty} \int_0^2 x e^{t^2} dt
\]

using L Hospital's rule

= 1/2
An alternate way of doing the above problem

Example Ratio of Integrals simplified individually

(a) 0
(b) 1/2
(c) 2
(d) none of these

Solution We know that $I_{2n} = \int_0^{\pi/2} \sin^{2n} x \, dx$

$= \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \ldots \cdot \frac{1}{2} \times \frac{\pi}{2}$

$I_{2n+1} = \int_0^{\pi/2} \sin^{2n+1} x \, dx = \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1} \cdot \ldots \cdot \frac{2}{3} \text{ and}$

Also, $I_{2m+1} = \frac{2m+1}{2m+1} I_{2m-1}$

For all $x \in (0, \pi/2)$, $\sin^{2m-1} x > \sin^{2m} x > \sin^{2m+1} x$

Integrating from 0 to $\pi/2$, we get $I_{2m-1} \geq I_{2m} \geq I_{2m+1}$

whence \[\frac{I_{2m-1}}{I_{2m+1}} \geq \frac{I_{2m}}{I_{2m+1}} \geq 1 \] \[(i) \]

Also \[\frac{I_{2m-1}}{I_{2m+1}} = \frac{2m+1}{2m} \text{ Hence } \lim_{m \to \infty} \frac{I_{2m-1}}{I_{2m+1}} = \lim_{m \to \infty} \frac{2m+1}{2m} = 1. \]

From (i) and using sandwich theorem we have $\lim_{m \to \infty} \frac{I_{2m}}{I_{2m+1}} = 1$.
Type - 9 - Some Summation problems which are solved by converting to Definite Integrals

AIEEE (now known as IIT-JEE main) - 2004

\[\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} e^{r/n} \]

(a) 1 - e (b) e - 1 (c) e (d) e + 1

Recall the basics to solve these kinds of problems

Put 1/n as dx and r/n is substituted as x the limit r=1 to n changes to Integral 0 to 1

(b) : \[\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} e^{r/n} \]

\[= \int_{0}^{1} e^{x} \, dx = e - 1 \]

So
Inequality of Definite Integrals

Schwarz-Bunyakovsky Inequality of Definite Integrals

\[\int_a^b f(x)g(x) \, dx \leq \left(\int_a^b f^2(x) \, dx \right)^{\frac{1}{2}} \left(\int_a^b g^2(x) \, dx \right)^{\frac{1}{2}} \]

If \(f(x) \) and \(g(x) \) are integrable on the interval \((a, b)\), then

For example

\[\frac{2}{\pi} \int_0^\frac{\pi}{2} \sin x \, dx < \left(\frac{2}{\pi} \int_0^\frac{\pi}{2} \sin x \, dx \right)^{\frac{1}{2}} \]

\[\int_0^\frac{\pi}{2} \sin x \, dx < \sqrt{\frac{\pi}{2}} \left(\int_0^\frac{\pi}{2} \sin x \, dx \right)^{\frac{1}{2}} = \sqrt{\frac{\pi}{2}} \]
Example - 10.1 -

The value of the integral

\[\int_{1}^{2} \sqrt{(2x + 3)(3x^2 + 4)} \, dx \]

cannot exceed

(a) \(\sqrt{48} \)
(b) \(\sqrt{66} \)
(c) \(\sqrt{73} \)
(d) none of these

Solution

\[(b). \int_{1}^{2} \sqrt{(2x + 3)(3x^2 + 4)} \, dx \]

\[\leq \int_{1}^{2} (2x + 3) \, dx \cdot \int_{1}^{2} (3x^2 + 4) \, dx \]

\[= \sqrt{[x^2 + 3x]_1^2 \cdot [x^3 + 4x]_1^2} = \sqrt{6 \times 11} = \sqrt{66} \]

Indefinite Integration of Square root of Cubic function, Cuberoot of cubic, Cuberoot of Quadratic functions

https://archive.org/details/IntegrationOfSquareRootOfCubicCuberootOfCubicAndCuberootOfQuadratic1

Example - 10.2 -

\[\int_{0}^{1} \frac{1}{x^2 + 16} \, dx \]

Show that \(0 \leq \int_{0}^{1} \frac{1}{x^2 + 16} \, dx \leq \frac{1}{17} \)

Solution:

\(0 < x < 1 \) means \(x \) varies between 0 to 1 where \(x \) is a fraction. So \(x^3 < x^2 \) Thus \(x^3 + 1 < x^2 + 1 \)

\[\Rightarrow \frac{1}{x^2 + 1} > \frac{1}{x^2 + 1} \]

\[\Rightarrow \int_{0}^{1} \frac{1}{x^2 + 16} \, dx < \int_{0}^{1} \frac{1}{x^2 + 16} \, dx \]

The function \(f(x) = \frac{x}{x^2 + 16} \) is an increasing function on \([0, 1]\). So \(\min f(x) = f(0) = 0 \) and \(\max f(x) = f(1) = \frac{1}{17} \).

Referring to the property - If the function \(f(x) \) increases and has a concave graph in the interval \([a, b]\), then

\[
(b - a) f(a) < \int_a^b f(x) \, dx < (b - a) \frac{f(a) + f(b)}{2}
\]

Or \(\min (b - a) \cdot f(a) < \text{Integral} < \max (b - a) \cdot f(a) \)

Graph of \(y = \frac{x}{x^2 + 16} \) is \(\) (The scale of y axis is distorted)

Thus \(\min (b - a) = (1 - 0) = 0 \) and \(\max (b - a) = \frac{1}{17} \cdot (1 - 0) = \frac{1}{17} = 0.058823529 \)

AIEEE (now known as IIT-JEE main) - 2005

If \(I_1 = \int_0^1 2^x \, dx \), \(I_2 = \int_0^1 x^2 \, dx \), \(I_3 = \int_0^1 2^x \, dx \) and \(I_4 = \int_1^2 2^x \, dx \), then

(a) \(I_1 > I_2 \) \hspace{1cm} (b) \(I_2 > I_1 \) \hspace{1cm} (c) \(I_3 > I_4 \) \hspace{1cm} (d) \(I_3 = I_4 \)

Solution
Example - 10.3 -

\[\int_{0}^{1} \frac{dx}{1 + x^2 + 2x^2} \]

lies between

(a) \(\frac{1}{4} \) and 1
(b) \(\frac{1}{4} \) and \(\frac{1}{2} \)
(c) \(\frac{1}{2} \) and 1
(d) none of these

Solution:

In the interval \([0, 1]\), \(f(x) \) is strictly decreasing, therefore, we have,

\[f(1) \leq f(x) \leq f(0), \text{ i.e., } \frac{1}{4} \leq f(x) \leq 1 \]

\[(1 - 0) \frac{1}{4} \leq \int_{0}^{1} f(x) \, dx \leq (1 - 0) 1 \]

i.e., \(\frac{1}{4} \leq \int_{0}^{1} f(x) \, dx \leq 1 \)

Do it again
Solution :

(c). We have,
\[1 + x^2 + 2x^5 \geq 1 + x^2\]
and \[1 + x^2 + 2x^5 \leq 1 + x^2 + 2x^5 = 1 + 3x^2\]
\[\therefore \quad \frac{1}{1 + 3x^2} \leq \frac{1}{1 + x^2 + 2x^5} \leq \frac{1}{1 + x^2}\]
\[\Rightarrow \quad \int_0^1 \frac{dx}{1 + 3x^2} \leq \int_0^1 \frac{dx}{1 + x^2 + 2x^5} \leq \int_0^1 \frac{dx}{1 + x^2}\]
\[\Rightarrow \quad \left[\tan^{-1} \sqrt{3x} \right]_0^1 \leq \int_0^1 \frac{dx}{1 + x^2 + 2x^5} \leq \left[\tan^{-1} x \right]_0^1\]
\[\Rightarrow \quad \frac{\pi}{3\sqrt{3}} \leq \int_0^1 \frac{dx}{1 + x^2 + 2x^5} \leq \frac{\pi}{4}\]

So we see as per the limits given we have to choose the approach
Example - 10.4 -

Solution:

(b). Let \(f(x) = \frac{1}{\sqrt{4-x^2-x^3}} \)

Since \(4-x^2 \geq 4-x^2-x^3 \geq 4-2x^2 > 1 \quad \forall \ x \in [0, 1] \)

\[\Rightarrow \frac{1}{\sqrt{4-x^2}} \leq \frac{1}{\sqrt{4-x^2-x^3}} \leq \frac{1}{\sqrt{4-2x^2}} \quad \forall \ x \in [0, 1] \]

\[\Rightarrow \int_{0}^{1} \frac{dx}{\sqrt{4-x^2}} \leq \int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}} \leq \int_{0}^{1} \frac{dx}{\sqrt{2-2x^2}} \]

\[\Rightarrow \left| \sin^{-1} \frac{x}{2} \right|_{0}^{1} \leq \left| \frac{dx}{\sqrt{4-x^2-x^3}} \right|_{0}^{1} \leq \left| \frac{1}{\sqrt{2}} \sin^{-1} \frac{x}{\sqrt{2}} \right|_{0}^{1} \]

\[\frac{\pi}{6} \leq \int_{0}^{1} \frac{dx}{\sqrt{4-x^2-x^3}} \leq \frac{\pi}{4\sqrt{2}} \]
AIEEE (now known as IIT-JEE main) - 2007

Example - 10.5 -

Let \(I = \int_{0}^{\frac{1}{\sqrt{x}}} \sin x \, dx \) and \(J = \int_{0}^{\frac{1}{\sqrt{x}}} \cos x \, dx \).

Then which one of the following is true?

(a) \(I > \frac{2}{3} \) and \(J < 2 \)
(b) \(I > \frac{2}{3} \) and \(J > 2 \)
(c) \(I < \frac{2}{3} \) and \(J < 2 \)
(d) \(I < \frac{2}{3} \) and \(J > 2 \)

Solution:

(c) : In the interval of integration \(\sin x < x \)

\[
I = \int_{0}^{\frac{1}{\sqrt{x}}} \frac{\sin x}{\sqrt{x}} \, dx < \int_{0}^{\frac{1}{\sqrt{x}}} \frac{x}{\sqrt{x}} \, dx = \int_{0}^{\frac{1}{\sqrt{x}}} \sqrt{x} \, dx = \left[\frac{2}{3} x^{3/2} \right]_{0}^{1} = \frac{2}{3}
\]

\(\therefore I < \frac{2}{3} \)

Also \(J = \int_{0}^{\frac{1}{\sqrt{x}}} \frac{\cos x}{\sqrt{x}} \, dx < \int_{0}^{\frac{1}{\sqrt{x}}} \frac{1}{\sqrt{x}} \, dx = [2 \sqrt{x}]_{0}^{1} = 2 \)

\(\therefore J < 2 \)

Example - 10.5 -

If \(I = \int_{1}^{2} \frac{dx}{\sqrt{2x^3 - 9x^2 + 12x + 4}} \), then

(a) \(\frac{1}{2} < I < \frac{1}{3} \)
(b) \(\frac{1}{4} < I < \frac{1}{3} \)
(c) \(\frac{1}{4} < I < 1 \)
(d) none of these
Solution:

\[(c). \text{ Let } f(x) = 2x^3 - 9x^2 + 12x + 4, \text{ then } f(x) \text{ is a decreasing function on the interval } [1, 2].
\]

\[\therefore 8 = f(2) < f(x) < f(1) = 9.\]

\[\therefore \frac{1}{3} < \frac{1}{\sqrt{2x^3 - 9x^2 + 12x + 4}} < \frac{1}{\sqrt{8}}\]

\[\Rightarrow \frac{1}{3} \int_1^2 dx < \int_1^2 \frac{dx}{\sqrt{2x^3 - 9x^2 + 12x + 4}} < \frac{1}{\sqrt{8}} \int_1^2 dx\]

\[\Rightarrow \frac{1}{4} < \frac{1}{3} < I < \frac{1}{\sqrt{8}} < 1\]

Hence, \(\frac{1}{4} < I < 1.\)

Example - 10.6 -

Let \(f\) be a real valued function satisfying \(f(x) + f(x + 6) = f(x + 3) + f(x + 9)\). Then, \(\int_x^{x+12} f(t) \, dt\) is

(a) a linear function
(b) an exponential function
(c) a constant function
(d) none of these

Solution:

(c). Given \(f(x) + f(x + 6) = f(x + 3) + f(x + 9)\)

Put \(x = x + 3\), we get

\(f(x + 3) + f(x + 9) = f(x + 6) + f(x + 12)\)

\(\Rightarrow f(x) = f(x + 12)\)

Let \(g(x) = \int_x^{x+12} f(t) \, dt\)

\(\Rightarrow g'(x) = f(x + 12) - f(x) = 0\)

\(\Rightarrow g(x)\) is a constant function.
Example - 10.7 -

If \(f(x) = x + \int_{0}^{1} (x y^2 - x^2 y) \ f(y) \, dy \), then \(f(x) \) attains a minimum at

(a) \(x = \frac{8}{9} \)

(b) \(x = -\frac{8}{9} \)

(c) \(\frac{9}{8} \)

(d) \(-\frac{9}{8} \)

Solution :

(d). Given

\[
f(x) = x + x \int_{0}^{1} y^2 f(y) \, dy - x^2 \int_{0}^{1} y f(y) \, dy
\]

\[
= x \left(1 + \int_{0}^{1} y^2 f(y) \, dy \right) - x^2 \left(\int_{0}^{1} y f(y) \, dy \right)
\]

\(\Rightarrow \) \(f(x) \) is a quadratic expression;

\(\Rightarrow \) \(f(x) = ax + bx^2 \) or \(f(y) = ay + by^2 \) ...(1)

where,

\[
a = 1 + \int_{0}^{1} y^2 f(y) \, dy
\]

\[
= 1 + \int_{0}^{1} y^2 (ay + by^2) \, dy
\]
\[
\frac{ ay^4 }{ 4 } + \frac{ by^5 }{ 5 } \bigg|_0^1 = 1 + \left(\frac{ a }{ 4 } + \frac{ b }{ 5 } \right) \\
\Rightarrow 20a = 20 + 5a + 4b \quad \text{or} \quad 15a - 4b = 20 \quad \text{...(2)}
\]

and,
\[
b = \int_0^1 y f(y) \, dy = \int_0^1 y \cdot (ay + by^2) \, dy
\]
\[
= \left[\frac{ ay^3 }{ 3 } + \frac{ by^4 }{ 4 } \right]_0^1 = \frac{ a }{ 3 } + \frac{ b }{ 4 }
\]
\[
\Rightarrow 12b = 4a + 3b \quad \text{or} \quad 9b - 4a = 0 \quad \text{...(3)}
\]

From (2) and (3),
\[
a = \frac{ 180 }{ 119 }, \quad b = \frac{ 80 }{ 119 }
\]
\[
\therefore \quad \text{Equation (1) reduces to}
\]
\[
f(x) = \frac{ 80x^2 + 180x }{ 119 },
\]
\[
\therefore \quad f'(x) = \frac{ 160x + 180 }{ 119 } = 0 \Rightarrow x = \frac{ -9 }{ 8 }
\]

and,
\[
f''(x) = \frac{ 160 }{ 119 } > 0 \Rightarrow f(x) \text{ attains minimum at } x = \frac{ -9 }{ 8 }
Type - 11 - Finding Area or Volume by applying Definite Integrals

Putting only one example from AIEEE (now known as IIT-JEE main) - 2008

Area of the plane region bounded by the curves \(x + 2y^2 = 0 \) and \(x + 3y^2 = 1 \) is?

(a) \(\frac{4}{3} \) (b) \(\frac{5}{3} \) (c) \(\frac{1}{3} \) (d) \(\frac{2}{3} \)

Solution:

We have to draw a graph quickly to visualize the intersections and thus the region that is being considered.

(a) : Solution \(x + 2y^2 = 0 \) and \(x + 3y^2 = 1 \) we have

\(1 - 3y^2 = -2y^2 \Rightarrow y^2 = 1 \quad \therefore \quad y = \pm 1 \)

\(y = -1 \Rightarrow x = -2 \)

\(y = 1 \Rightarrow x = -2 \)

The bounded region is as under

The desired area = \(2 \int_{0}^{1} [(1-3y^2) - (-2y^2)]\,dy \)

= \(2 \int_{0}^{1} (1-y^2)\,dy = 2 \left[y - \frac{y^3}{3} \right]_{0}^{1} \)

= \(2 \times \frac{2}{3} = \frac{4}{3} \) sq. units
Example - 11.1 -

The area bounded by the lines $y = 2, \ x = 1, \ x = a$ and the curve $y = f(x)$, which cuts the last two lines above the first line for all $a \geq 1$, is equal to $\frac{2}{3} \left[(2a)^{3/2} - 3a + 3 - 2\sqrt{2}\right]$. Then, $f(x) =$

(a) $2 \sqrt{2x}, x \geq 1$ \quad (b) $\sqrt{2x}, x \geq 1$

(c) $2 \sqrt{x}, x \geq 1$ \quad (d) none of these

Solution:

(a). We are given

$$\int_{1}^{a} [f(x) - 2] \, dx = \frac{2}{3} \left[(2a)^{3/2} - 3a + 3 - 2\sqrt{2}\right].$$

Differentiating w.r.t. a, we get

$$f(a) - 2 = \frac{2}{3} \left[\frac{3}{2} \sqrt{2a} \cdot 2 - 3\right]$$

$$\Rightarrow f(a) = 2 \sqrt{2a}, a \geq 1$$

$$\therefore \ f(x) = 2 \sqrt{2x}, x \geq 1.$$

This differentiation with respect to a or alpha is discussed below

Type - 12 - A reverse integration by Partial differentiation by assuming an unknown constant, to be variable. Often written as α

Example

$$\int_{0}^{1} \frac{x^b - 1}{\ln x} \, dx$$

The value of the integral \((b > 0)\) is

a) $\ln |b|$ \quad b) $\ln |b + 1|$ \quad c) $3 \ln |b|$ \quad d) None of these

Answer (d)
Solution:

\[\int_0^1 \frac{b-1}{\ln x} \, dx \quad [\text{Considering } x \text{ as constant and partially differentiating with respect to } b] \]

Recall \(\frac{d}{dx} a^x = a^x \ln a \) So \(\frac{d}{db} x^b = x^b \ln x \)

\[\int_0^1 \frac{x^b \ln x}{\ln x} \, dx = \int_0^1 \frac{x^b}{b+1} \, dx = \frac{1}{b+1} \]

So \(I'(b) = \frac{db}{b+1} = \ln |b+1| + c \)

Thus \(I(b) = \ln |b+1| + c \)

If \(b = 0 \), then \(I(b) = 0 \) So \(c = 0 \)

Hence \(I(b) = \ln |b+1| \)

Type - 13 - Problems with Fraction symbol \{ x \}

\{ 1.3 \} = 0.3 \quad \{ 9.1 \} = 0.1 \quad \text{The fraction part of the number}

Example - 13.1 -

The value of \(\int_{-1}^2 \left[[x] - \{x\} \right] \, dx \), where \([x]\) is the greatest integer less than or equal to \(x \) and \(\{x\} \) is the fractional part of \(x \) is

(a) \(7/2 \) \quad (b) \(5/2 \)

(c) \(1/2 \) \quad (d) \(3/2 \)

Ans. (a)

Solution For any \(x \in \mathbb{R} \), \(x = [x] + \{x\} \) so

\([x] - \{x\} = 2 [x] - x. \) Thus

\[\int_{-1}^2 |[x] - \{x\}| \, dx = \]

\[= \int_{-1}^0 2[x] - x \, dx + \int_0^1 2[x] - x \, dx + \int_1^2 2[x] - x \, dx \]

\[= \int_{-1}^0 2 + x \, dx + \int_0^1 x \, dx + \int_1^2 2 - x \, dx \]
Example - 13.2 -

If $I_1 = \int_0^a \lfloor x \rfloor \, dx$ and $I_2 = \int_0^a \{ x \} \, dx$, where $\lfloor x \rfloor$ and $\{ x \}$ denote, respectively, the integral and fractional parts of x and a is a positive integer, then

(a) $I_2 = (a - 1) I_1$
(b) $I_1 = (a - 1) I_2$
(c) $I_1 = a I_2$
(d) $I_2 = a I_1$.

Solution:

(b). We have, $I_1 = \int_0^a \lfloor x \rfloor \, dx$

\[
= \int_0^1 0 \, dx + \int_1^2 1 \, dx + \int_2^3 2 \, dx + \cdots + \int_{a-1}^a (a-1) \, dx
\]

\[
= 1 + 2 + \cdots + (a-1) = \frac{a(a-1)}{2} \quad \text{...(1)}
\]

$I_2 = \int_0^a \{ x \} \, dx = \int_0^a (x - \lfloor x \rfloor) \, dx = \int_0^a x \, dx - \int_0^a \lfloor x \rfloor \, dx$

\[
= \frac{x^2}{2} \Bigg|_0^a - \frac{a(a-1)}{2} = \frac{a^2}{2} - \frac{a(a-1)}{2} = \frac{a}{2} \quad \text{...(2)}
\]

From (1) and (2), we have

\[
\frac{I_1}{I_2} = (a-1) \quad \therefore \quad I_1 = (a-1) I_2.
\]
Example - 13.3 -

The value of \(\int_{0}^{1} ((2x-1) - (3x-1)) \, dx \), where \(\{ \cdot \} \) denotes the fractional part is,

(a) \(\frac{19}{72} \)
(b) \(\frac{31}{9} \)
(c) \(\frac{1}{8} \)
(d) \(\frac{72}{19} \)

Solution :

\[
\begin{align*}
\text{(a)} & \quad \int_{0}^{1} ((2x-1) - (3x-1)) \, dx \\
& = \int_{0}^{1/3} ((2x-1) - (3x-1)) \, dx + \int_{1/3}^{1/2} ((2x-1) - (3x-1)) \, dx \\
& \quad + \int_{1/2}^{2/3} ((2x-1) - (3x-1)) \, dx + \int_{2/3}^{1} ((2x-1) - (3x-1)) \, dx \\
& = \int_{0}^{1/3} (2x-1) \, dx + \int_{1/3}^{1/2} (2x-1) \, dx + \int_{1/2}^{2/3} (2x-1) \, dx + \int_{2/3}^{1} (2x-1) \, dx \\
& \quad + \int_{1/2}^{2/3} (3x-2) \, dx + \int_{2/3}^{1} (3x-2) \, dx \\
& = \int_{0}^{1/3} (6x^2 - 5x + 1) \, dx + \int_{1/3}^{1/2} (6x^2 - 7x + 2) \, dx \\
& \quad + \int_{1/2}^{3/2} (6x^2 - 10x + 4) \, dx + \int_{3/2}^{2/3} (6x^2 - 12x + 6) \, dx \\
& = \frac{19}{72}.
\end{align*}
\]
Example - 13.4 -

If \([x]\) and \(\{x\}\) denote the integral and fractional parts of \(x\), respectively, then \(\int_{0}^{x} \left(x - [x] - \frac{1}{2} \right) \, dx \) is equal to

(a) \(\frac{1}{2} \{x\} (\{x\} - 1)\) \hspace{1cm} (b) \(\frac{1}{2} \{x\} (\{x\} + 1)\)

(c) \(\{x\} (\{x\} - 1)\) \hspace{1cm} (d) none of these

Solution:

(a). We have,

\[
\int_{0}^{x} \left(x - [x] - \frac{1}{2} \right) \, dx = \int_{0}^{[x]+[x]} \left(\{x\} - \frac{1}{2} \right) \, dx
\]

\[
= \int_{0}^{[x]} \left(\{x\} - \frac{1}{2} \right) \, dx + \int_{[x]}^{[x]+[x]} \left(\{x\} - \frac{1}{2} \right) \, dx
\]

\[
= [x] \int_{0}^{1} \left(\{x\} - \frac{1}{2} \right) \, dx + \int_{0}^{[x]} \left(\{x\} - \frac{1}{2} \right) \, dx
\]

\[
= [x] \int_{0}^{1} \left(\frac{x^2}{2} - \frac{x}{2} \right) \, dx + \int_{0}^{[x]} \left(\frac{x^2}{2} - \frac{x}{2} \right) \, dx
\]

\[
= [x] \left(\frac{x^2}{2} - \frac{x}{2} \right)_{0}^{1} + \int_{0}^{[x]} \left(\frac{x^2}{2} - \frac{x}{2} \right) \, dx
\]

\[
= [x] \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{[x]}{2} (\{x\} - 1) = \frac{1}{2} \{x\} (\{x\} - 1)
\]
Type - 14 - Problems that don’t fit into any standard form.

We need to solve rigorously and get the result, specific to the problem.

Such as

The value of the integral $\int_{0}^{2\pi} e^{\cos\theta} \cos(\sin\theta) d\theta$ is

(a) 0
(b) π
(c) 2π
(d) cannot be determined

Solution:

Here we will use “i” as a tool to solve the problem. Euler Equation $e^{ix} = \cos x + i \sin x$ helps us to modify the problem.

\[
\text{(c).} \quad \int_{0}^{2\pi} e^{\cos\theta} \cos(\sin\theta) d\theta
\]

= Real part of $\int_{0}^{2\pi} e^{\cos\theta} \{\cos(\sin\theta) + i \sin(\sin\theta)\} d\theta$

= Real part of $\int_{0}^{2\pi} e^{\cos\theta} e^{i\sin\theta} d\theta$

= Real part of $\int_{0}^{2\pi} e^{\cos\theta+i\sin\theta} d\theta$

= Real part of $\int_{0}^{2\pi} e^{i\theta} d\theta$
= \text{Real part of} \int_0^{2\pi} \left[1 + \frac{e^{2i\theta}}{2!} + \frac{e^{3i\theta}}{3!} + \ldots \right] d\theta

= \text{Real part of} \int_0^{2\pi} \left[1 + (\cos \theta + i\sin \theta)
+ \frac{1}{2!} (\cos 2\theta + i\sin 2\theta) + \ldots \right] d\theta

= \int_0^{2\pi} \left[1 + \cos \theta + \frac{1}{2!} \cos 2\theta + \ldots \right] d\theta

= \left[\theta + \sin \theta + \frac{\sin 2\theta}{2.2!} + \ldots \right]_0^{2\pi} = 2\pi.

\text{Example - 14.1 -}

If \(I = \int_0^{\pi/2} \cos^n x \sin^n x \, dx = \lambda \int_0^{\pi/2} \sin^n x \, dx \)

then \(\lambda \) equals

(a) \(2^{n+1} \) \hspace{1cm} (b) \(2^{n-1} \) \hspace{1cm} (c) \(2^n \) \hspace{1cm} (d) \(2^{-1} \)

\text{Ans. (c)}

\text{Solution}

\[I = \frac{1}{2^n} \int_0^{\pi/2} (2 \sin x \cos x)^n \, dx \]

\[= \frac{1}{2^n} \int_0^{\pi/2} (\sin 2x)^n \, dx \]

Put \(2x = \theta \), so that

\[I = \frac{1}{2^n} \int_0^\pi \left(\sin^n \theta \right) \frac{1}{2} \, d\theta \]

\[= \frac{1}{2^{n+1}} \int_0^\pi \left[(\sin^n \theta^n + (\sin (\pi - \theta))^n) \right] d\theta \]

using \(\int_0^{2a} f(x) \, dx = \int_0^a [f(x) + f(2a - x)] \, dx \)

\(\sin (\pi - \theta) = \sin \theta \) so we can use gamma function for integrating \(\sin^n \theta \)
Practice example

If \(\int_{0}^{1} \frac{\sin t}{1+t} dt = \alpha \), then the value of the integral

\[\int_{\frac{4\pi}{4\pi+2}}^{\frac{4\pi}{2}} \frac{\sin t/2}{4\pi+2-t} dt \]

in terms of \(\alpha \) is given by

(a) \(2\alpha \)
(b) \(-2\alpha \)
(c) \(\alpha \)
(d) \(-\alpha \)

Solution:

\[\int_{\frac{4\pi}{4\pi+2}}^{\frac{4\pi}{2}} \frac{\sin t/2}{4\pi+2-t} dt = \frac{1}{2} \int_{\frac{4\pi}{4\pi+2}}^{\frac{4\pi}{2}} \frac{\sin t/2}{\left(2\pi - \frac{t}{2}\right)} dt \]

= \frac{1}{2} \left[\int_{1}^{\infty} \frac{\sin\left(2\pi - u\right)}{1+u} \, du \right]

= -\int_{0}^{1} \frac{\sin t}{1+t} \, dt = -\alpha.

An IIT-JEE problem from 70s

If \(I_1 = \int_{0}^{\pi/2} \cos(\sin x) \, dx; \ I_2 = \int_{0}^{\pi/2} \sin(\cos x) \, dx \) and

\[I_3 = \int_{0}^{\pi/2} \cos x \, dx, \] then

(a) \(I_1 > I_3 > I_2 \)
(b) \(I_3 > I_1 > I_2 \)
(c) \(I_1 > I_2 > I_3 \)
(d) \(I_3 > I_2 > I_1 \)
Solution:

(a). We have, \(\sin x < x \) for \(x > 0 \)
\[\Rightarrow \int_{0}^{\pi/2} \sin(x) \, dx < \int_{0}^{\pi/2} x \, dx \]
\[\therefore I_3 > I_2 \]

Now, \(\cos x < \cos \alpha \) if \(x > \alpha \) and \(x, \alpha \in \left[0, \frac{\pi}{2} \right] \)
\[\therefore x > \sin x \]
\[\Rightarrow \int_{0}^{\pi/2} \cos(x) \, dx < \int_{0}^{\pi/2} \cos(x) \, dx \]
\[\therefore I_3 > I_1 \]
\[\therefore \text{from (1) and (2) } I_1 > I_3 > I_2 ^{(2)} \]

Example - 14.2 -

The natural number \(n \) (\(\leq 5 \)) for which
\[I_n = \int_{0}^{1} e^x (x-1)^n \, dx = 16 - 6e \]
is
(a) 2
(b) 3
(c) 4
(d) 5

Ans. (b)

Solution: We have
\[I_0 = \int_{0}^{1} e^x \, dx = e^1 \bigg|_{0}^{1} = e - 1 \]
and for \(n \geq 1 \),
\[I_n = e^x (x-1)^n \bigg|_{0}^{1} - n \int_{0}^{1} e^x (x-1)^{n-1} \, dx \]
\[= e - 1 - n I_{n-1} \]
\[\therefore I_1 = 1 - (1) I_0 = 1 - (e - 1) = 2 - e \]
\[I_2 = 1 - 2 I_1 = 1 - 2 (2 - e) = 2e - 5 \]
and \[I_3 = 1 - 3 I_2 = 1 - 3(2e - 5) \]
\[= 16 - 6e \]
So \(n = 3 \)
Example - 14.3 -

If \(b > a \) and \(I = \int_{a}^{b} \frac{dx}{\sqrt{(x-a)(b-x)}} \), then \(I \) equals

(a) \(\pi^2 \)
(b) \(\pi \)
(c) \(3\pi^2 \)
(d) \(2\pi \)

Ans. (b)

Solution
Put \(t = \frac{1}{2} (x-a+x-b) = x - \frac{1}{2} (a+b) \), so that

\[(x-a)(b-x) = (t+c)(c-t) = c^2 - t^2\]

where \(c = \frac{1}{2} (b-a) \).

Thus,

\[I = \int_{-c}^{c} \frac{dx}{\sqrt{c^2 - t^2}}\]

\[= 2 \int_{0}^{c} \frac{dx}{\sqrt{c^2 - t^2}} = 2 \sin^{-1} \left(\frac{t}{c} \right) \bigg|_{0}^{c}\]

\[= 2[\sin^{-1} (1) - 0] = \pi\]
Example 14.4 -

If \(b > a \), and \(I = \int_a^b \sqrt{\frac{x-a}{b-x}} \, dx \),

then \(I \) equals

(a) \(\frac{\pi}{2} (b-a) \)
(b) \(\pi (b-a) \)
(c) \(\pi b \)
(d) \(2\pi(b-a) \)

Ans. (a)

Solution
Put \(b-x = t^2 \), so that

\[
I = \int_{\sqrt{b-a}}^{\sqrt{c}} \frac{1}{\sqrt{\frac{b-t^2}{t^2}}} (-2t) \, dt
\]

\[
= 2 \int_0^c \sqrt{c^2-t^2} \, dt \quad \text{where} \quad c = \sqrt{b-a}
\]

\[
= 2 \left[\frac{1}{2}t\sqrt{c^2-t^2} + \frac{c^2}{2} \sin^{-1}\left(\frac{t}{c}\right) \right]_0^c
\]

\[
= 0 + c^2 \sin^{-1}(1) - 0 = \frac{\pi}{2} (b-a).
\]

Example 14.5 -

The mean value of the function \(f(x) = \frac{1}{x^2 + x} \) on the interval \([1, 3/2]\) is

(a) \(\log(6/5) \)
(b) \(2 \log(6/5) \)
(c) \(4 \)
(d) \(\log \frac{3}{5} \)

Ans. (b)

Solution
Mean value = \(\frac{1}{b-a} \int_a^b f(x) \, dx \)

\[
= \frac{1}{3/2-1} \int_1^{3/2} \frac{1}{x^2 + x} \, dx
\]

\[
= 2 \left[\frac{1}{x} - \frac{1}{x+1} \right]_1^{3/2}
\]

\[
= 2(\log x - \log(x+1)) \bigg|_{1/2}^{3/2} = 2[\log(3/2) - \log(5/2) - (\log 1 - \log 2)]
\]

\[
= 2 \log(6/5).
\]
Example of Max function

The value of \(\int_{-2}^{2} \max \{(1-x), (1+x), 2\} \, dx \) is

(a) 8
(b) -8
(c) 9
(d) -9

Solution

(c). For \(-2 \leq x \leq -1\), we have \(1-x \geq 2\) and \(1-x > 1+x\)

\[\therefore \max \{(1-x), (1+x), 2\} = 1-x. \]

For \(-1 < x < 1\), we have \(0 < 1-x < 2\) and \(0 < 1+x < 2\)

\[\therefore \max \{(1-x), (1+x), 2\} = 2. \]

For \(1 \leq x \leq 2\), we have \(1+x \geq 2\) and \(1+x > 1-x\)

\[\therefore \max \{(1-x), (1+x), 2\} = 1+x. \]

\[\therefore \int_{-2}^{2} \max \{(1-x), (1+x), 2\} \, dx \]

\[= \int_{-2}^{-1} (1-x) \, dx + \int_{-1}^{1} 2 \, dx + \int_{1}^{2} (1+x) \, dx \]

\[= \left[x - \frac{x^2}{2} \right]_{-2}^{-1} + [2x]_{-1}^{1} + \left[x + \frac{x^2}{2} \right]_{1}^{2} = 9 \]

Example - 14.6 -

If \(\int_{0}^{100} f(x) \, dx = a \), then

\[\sum_{r=1}^{100} \left(\int_{0}^{1} f(r+1-x) \, dx \right) \]

(a) 100a
(b) a
(c) 0
(d) 100a
Solution:

(b). Let \(I = \sum_{r=1}^{100} \left(\int_{0}^{1} f(r-1+x) \, dx \right) \)

\[I = \int_{0}^{1} f(x) \, dx + \int_{0}^{1} f(1+x) \, dx + \int_{0}^{1} f(2+x) \, dx + \ldots + \int_{0}^{1} f(99+x) \, dx \]

\[I = \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx + \ldots + \int_{99}^{100} f(x) \, dx \]

\[I = \int_{0}^{100} f(x) \, dx = a. \]

Practice example

The value of \(\int_{1}^{16} \tan^{-1} \sqrt{x-1} \, dx \) is

(a) \(\frac{16\pi}{3} + 2\sqrt{3} \)

(b) \(\frac{4\pi}{3} - 2\sqrt{3} \)

(c) \(\frac{4\pi}{3} + 2\sqrt{3} \)

(d) \(\frac{16\pi}{3} - 2\sqrt{3} \)

Ans. (d)

Solution Integrating by parts, the given integral is equal to

\[x \tan^{-1} \sqrt{x-1} \bigg|_{1}^{16} - \int_{1}^{16} \frac{x}{\sqrt{x} \sqrt{x-1}} \, dx \]

\[= \frac{16\pi}{3} - \frac{1}{4} \int_{1}^{16} \frac{dx}{\sqrt{x-1}} \]

\[= \frac{16\pi}{3} - \frac{1}{4} \left[\sqrt{3} \ln(1+t^2) \right]_{t=1}^{t=\sqrt{3}} \]

\[= \frac{16\pi}{3} - (\sqrt{3} + \sqrt{3}) = \frac{16\pi}{3} - 2\sqrt{3} \]
Practice Example

For any \(t \in \mathbb{R} \) and \(f \) a continuous function, let

\[
I_1 = \int_{\sin^{-1} t}^{\cos^{-1} t} f(x)\left(\frac{2-x}{2(2-x)}\right) dx \quad \text{and} \quad I_2 = \int_{\sin^{-1} t}^{\cos^{-1} t} f(x(2-x)) dx
\]

then \(I_1/I_2 \) is equal to

(a) 2 \hspace{1cm} (b) 1 \hspace{1cm} (c) 4 \hspace{1cm} (d) none of these

Ans. (b)

Solution

\[
I_1 = \int_{\sin^{-1} t}^{\cos^{-1} t} f(x(2-x)) dx
\]

\[
= \int_{\sin^{-1} t}^{\cos^{-1} t} f(x(2-x)) dx
\]

\[
= 2 \int_{\sin^{-1} t}^{\cos^{-1} t} f(x(2-x)) dx - \int_{\sin^{-1} t}^{\cos^{-1} t} f(x(2-x)) dx = 2I_2 - I_1
\]

Therefore, \(2I_1 = 2I_2 \) and so \(I_1/I_2 = 1 \).

Practice Example

If \(\int_0^\infty e^{-ax} dx = \frac{1}{a} \), then \(\int_0^\infty x^n e^{-ax} dx \) is

(a) \(\frac{(-1)^n n!}{a^{n+1}} \) \hspace{1cm} (b) \(\frac{(-1)^n (n-1)!}{a^n} \)

(c) \(\frac{n!}{a^{n+1}} \) \hspace{1cm} (d) none of these

Solution:

\[
(c). \text{ Let } I_n = \int_0^\infty x^n e^{-ax} dx
\]

\[
= \left[x^n e^{-ax} \right]_0^\infty - \int_0^\infty x^n e^{-ax} \cdot \frac{e^{-ax}}{-a} \, dx
\]

\[
= \frac{1}{a} \lim_{x \to \infty} x^n e^{-ax} + \frac{n}{a} \int I_{n-1}
\]

\[
\therefore \quad I_n = \frac{n}{a} I_{n-1}
\]

\[
\therefore \lim_{x \to \infty} \frac{x^n}{e^{ax}} = 0
\]

\[
= \frac{n}{a} \cdot \frac{n-1}{a} \int I_{n-2}
\]

\[
= \frac{n(n-1)(n-2)}{a^3} I_{n-3}
\]
\[\frac{n!}{a^n} \int_0^\infty e^{-ax} \, dx = \frac{n!}{a^{n+1}}. \]

Practice Example

The value of \(I = \int_{-\pi/2}^{\pi/2} \sqrt{\cos x - \cos^3 x} \, dx \) is

(a) 0
(b) 2/3
(c) 4/3
(d) 1/3

Solution

\[
I = \int_{-\pi/2}^{\pi/2} \sqrt{\cos x} \sin x \, dx
\]

\[
= 2 \int_{-\pi/2}^{\pi/2} \sqrt{\cos x} \sin x \, dx \quad \text{(the integrand is an even function)}
\]

\[
= 2 \int_0^{\pi/2} \sqrt{\cos x} \sin x \, dx = \left. \frac{4}{3} (\cos x)^{3/2} \right|_0^{\pi/2} = \frac{4}{3}.
\]

Practice Example

The value of \(\int_1^a [x] f'(x) \, dx, \ a > 1 \), where \([x]\) denotes the greatest integer not exceeding \(x \) is

(a) \(af([a]) - \{ f(1) + f(2) + \ldots + f(a) \} \)

(b) \(af(a) - \{ f(1) + f(2) + \ldots + f([a]) \} \)

(c) \([a] f(a) - \{ f(1) + f(2) + \ldots + f([a]) \} \)

(d) \([a] f([a]) - \{ f(1) + f(2) + \ldots + f(a) \} \)
Solution:

\[\int_{a}^{q} \left(\sum_{n=1}^{\infty} \frac{1}{n} \right) \, dx \]

\[= \sum_{n=1}^{\infty} \int_{a}^{q} \frac{1}{n} \, dx \]

\[= \sum_{n=1}^{\infty} \left[\frac{x}{n} \right]_{a}^{q} \]

\[= \sum_{n=1}^{\infty} \left(\frac{q}{n} - \frac{a}{n} \right) \]

\[= \sum_{n=1}^{\infty} \left(\frac{q-a}{n} \right) \]

\[= \ln(q-a) - \ln(a) \]

Practice Example

The value of \(\int_{-\pi}^{3\pi} \log(\sec \theta - \tan \theta) \, d\theta \) is

(a) 1
(b) 0
(c) 2
(d) none of these

Solution

\[I = \int_{-\pi}^{3\pi} \log(\sec \theta - \tan \theta) \, d\theta \]

\[= \int_{-\pi}^{3\pi} \log(\sec(2\pi - \theta) - \tan(2\pi - \theta)) \, d\theta \]

\[= \int_{-\pi}^{3\pi} \log(\sec \theta + \tan \theta) \, d\theta \]

Thus

\[2I = \int_{-\pi}^{3\pi} [\log(\sec \theta - \tan \theta) + \log(\sec \theta + \tan \theta)] \, d\theta \]

\[= \int_{-\pi}^{3\pi} \log(\sec^2 \theta - \tan^2 \theta) \, d\theta = \int_{-\pi}^{3\pi} \log 1 \, d\theta = 0. \]
Practice Example

\[
\int_0^{2\pi} \frac{1}{1 + e^{\sin x}} \, dx
\]

Let \[I = \int_0^{2\pi} \frac{1}{1 + e^{\sin x}} \, dx \]

Also, \[I = \int_0^{2\pi} \frac{1}{1 + e^{\sin (2\pi - x)}} \, dx \]

\[= \int_0^{2\pi} \frac{1}{1 + e^{-\sin x}} \, dx \]

\[= \int_0^{2\pi} \frac{e^{\sin x}}{e^{\sin x} + 1} \, dx \]

Adding (i) and (ii), we have

\[2I = \int_0^{2\pi} \frac{1}{1 + e^{\sin x}} \, dx + \int_0^{2\pi} \frac{e^{\sin x}}{e^{\sin x} + 1} \, dx \]

\[= \int_0^{2\pi} \frac{1 + e^{\sin x}}{e^{\sin x} + 1} \, dx = \int_0^{2\pi} dx = 2\pi \]

\[2I = 2\pi \]

Solve a Simple Problem

\[
\int \frac{3x + 1}{2x^2 + x + 1} \, dx = \int \left(\frac{3}{4} \left(\frac{4x + 1}{2x^2 + x + 1} \right) + \frac{1}{4} \right) \, dx
\]

\[= \frac{3}{4} \int \left(\frac{4x + 1}{2x^2 + x + 1} \right) \, dx + \frac{1}{8} \int \frac{dx}{\left(\frac{x^2}{2} + \frac{x}{2} + \frac{1}{2} \right)} \]

\[= \frac{3}{4} \log (2x^2 + x + 1) + \frac{1}{2\sqrt{7}} \tan^{-1} \frac{4x + 1}{\sqrt{7}} + C
\]
A routine problem asked in several exams

\[
\int_0^1 \frac{1}{1+x^2} \sin^{-1} \left(\frac{2x}{1+x^2} \right) \, dx =
\]

(a) \(\frac{7}{72} \pi^2 \)
(b) \(\frac{3}{42} \pi^2 \)
(c) \(\frac{17}{72} \pi^2 \)
(d) none of these

Solution:

(a). Let \(I = \int_0^1 \frac{1}{1+x^2} \sin^{-1} \left(\frac{2x}{1+x^2} \right) \, dx \)

Now, \(\sin^{-1} \left(\frac{2x}{1+x^2} \right) = \begin{cases} 2 \tan^{-1} x, & \text{if } -1 \leq x \leq 1 \\ \pi - 2 \tan^{-1} x, & \text{if } x > 1 \end{cases} \)

\[
= \int_0^1 \frac{1}{1+x^2} \sin^{-1} \left(\frac{2x}{1+x^2} \right) \, dx + \int_1^\infty \frac{1}{1+x^2} \sin^{-1} \left(\frac{2x}{1+x^2} \right) \, dx
\]

\[= \int_0^1 \frac{2 \tan^{-1} x}{1+x^2} \, dx + \int_1^\infty \frac{\pi - 2 \tan^{-1} x}{1+x^2} \, dx \]

\[= 2 \int_0^1 \frac{\tan^{-1} x}{1+x^2} \, dx + \pi \int_1^\infty \frac{1}{1+x^2} \, dx \]

\[= 2 \left[\frac{\pi}{4} \right] + \pi \left(\tan^{-1} x \right)_{1}^{\infty} - 2 \int_1^\infty \frac{\tan^{-1} x}{1+x^2} \, dx \]

\[= 2 \left[\frac{\pi}{4} \right] + \pi \left(\frac{\pi}{4} \right) - 2 \int_1^\infty \frac{t \, dt}{1+t^2} \]

(Put \(\tan^{-1} x = t \))
Solve a problem

\[\int \frac{x}{(1-x)^{1/3} - (1-x)^{1/2}} \, dx \quad \{ \text{The LCM of 2 and 3 is 6} \} \]

Hence, substitute \(1-x = u^6 \) Then, \(dx = -6u^5 \, du \)

\[
\Rightarrow I = \frac{-u^6}{u^2 - u^3}(-6u^5 \, du) = -6\int \frac{-u^6}{1-u} \, du
\]

\[
= -6\int (1 + u + u^2 + u^3 + u^4 + u^5) \, u^3 \, du
\]

\[
= -6\left(\frac{1}{4}u^4 + \frac{1}{5}u^5 + \frac{1}{6}u^6 + \frac{1}{7}u^7 + \frac{1}{8}u^8 + \frac{1}{9}u^9 \right) + c
\]

Solve a Problem

The value of \(\int_0^1 \frac{x}{x^2 + 16} \, dx \) lies in the interval \([a, b]\). The smallest such interval is

(a) \([0, 1]\) (b) \(\left[0, \frac{1}{7}\right]\)

(c) \(\left[0, \frac{1}{17}\right]\) (d) none of these
Solution:

\(f(x) = \frac{x}{x^2 + 16} \)

\[f'(x) = \frac{(x^2 + 16).1 - x.2x}{(x^2 + 16)^2} \]
\[= \frac{16 - x^2}{(x^2 + 16)^2} \geq 0 \]
\[\Rightarrow 16 \geq x^2 \Rightarrow x^2 \leq 16 \Rightarrow -4 \leq x \leq 4 \]
\[\therefore f(x) \text{ is monotonic increasing in } [-4, 4]. \text{ Since } [0, 1], \]
\[\subseteq [-4, 4] \]
\[\therefore f(x) \text{ is monotonic increasing in } [0, 1] \]
\[M = \frac{1}{1 + 16} = \frac{1}{17} \quad \text{and} \quad m = \frac{0}{0 + 16} = 0 \]

\[\therefore m (1 - 0) \leq \int_0^1 f(x) \, dx \leq M (1 - 0) \]
\[\Rightarrow 0 (1 - 0) \leq \int_0^1 \frac{x}{x^2 + 16} \, dx \leq \frac{1}{17} (1 - 0) \]
\[\Rightarrow 0 \leq \int_0^1 \frac{x \, dx}{x^2 + 16} \leq \frac{1}{17} \]
\[\therefore \text{ The smallest such interval is } \left[0, \frac{1}{17} \right] \]
Solve a Problem

\[\text{Evaluate } \int \cos 2x \log(1 + \tan x) \, dx. \]

Solution:

Integrating by parts taking \(\cos 2x \) as the 2nd function, the given integral

\[
\begin{align*}
&= \{ \log(1 + \tan x) \} \frac{\sin 2x}{2} - \int \frac{\sec^2 x \cdot \sin 2x}{1 + \tan x} \cdot \frac{\sin 2x}{2} \, dx \\
&= \frac{1}{2} \sin 2x \log(1 + \tan x) - \int \frac{\sin x}{\sin x + \cos x} \, dx.
\end{align*}
\]

Now

\[
\int \frac{\sin x \, dx}{\sin x + \cos x} = \frac{1}{2} \int \frac{\sin x + \cos x - (\cos x - \sin x)}{\sin x + \cos x} \, dx,
\]

\[
= \frac{1}{2} \int \left[1 - \frac{\cos x - \sin x}{\sin x + \cos x} \right] \, dx = \frac{1}{2} [x - \log (\sin x + \cos x)].
\]

Hence the given integral

\[
\frac{1}{2} \sin 2x \log(1 + \tan x) - \frac{1}{2} [x - \log(\sin x + \cos x)].
\]

Recall how to integrate Linear X root Quadratic in denominator

Find the value of the

\[\int \frac{dx}{(x+1)\sqrt{(1+2x-x^2)}} \]

Putting \((x + 1) = \frac{1}{t} \), so that \(dx = -\frac{1}{t^2} \, dt \), \(x = \frac{1-t}{t} \) and

\[
(1 + 2x - x^2) = 1 + 2 \left(\frac{1-t}{t} \right) - \left(\frac{1-t}{t} \right)^2 = \frac{2}{t^2} \left[\left(\frac{1}{\sqrt{2}} \right)^2 - (t-1)^2 \right],
\]

we get the value of the given integral transformed as
Remember -

For the form \(\frac{dx}{(Ax + B) \sqrt{(ax^2 + bx + c)}} \) where \(r \) is a positive integer

we can substitute

\[
Ax + B = \frac{1}{t}
\]

But for \(\frac{dx}{(Ax^2 + Bx + C) \sqrt{(ax + b)}} \) we have to substitute \(ax + b = t^2 \)

So the Linear expression that in inside the root will be substituted

Another advanced example

Example Evaluate \(\int \frac{dx}{x \sqrt{(1 + x^n)}} \)

Make the substitution \((1 + x^n) = t^2 \) or \(x^n = (t^2 - 1) \), so that

\[
n x^{n-1} \frac{dx}{dt} = 2t \ dt, \text{ we get}
\]

\[
\int \frac{2t \ dt}{nx^n t} = \frac{2}{n} \int \frac{dt}{(t^2 - 1)} = \frac{1}{n} \ln \left| \frac{t - 1}{t + 1} \right|
\]

\[
= \frac{1}{n} \ln \left| \frac{\sqrt{(1 + x^n)} - 1}{\sqrt{(1 + x^n)} + 1} \right| + C
\]
Similarly

The value of integral \(\int \frac{dx}{x \sqrt{1 - x^3}} \) is given by

(a) \(\frac{1}{3} \log \left| \frac{\sqrt{1 - x^3} + 1}{\sqrt{1 - x^3} - 1} \right| + C \)

(b) \(\frac{1}{3} \log \left| \frac{\sqrt{1 - x^3} + 1}{\sqrt{1 - x^3} - 1} \right| + C \)

(c) \(\frac{2}{3} \log \left| \frac{1}{\sqrt{1 - x^3}} \right| + C \)

(d) \(\frac{1}{3} \log \left| 1 - x^3 \right| + C \)

Ans. (b)

Solution

Put \(1 - x^3 = t^2 \). Then \(-3x^2dx = 2t \, dt\) and the integral becomes

\[\frac{-1}{3} \int \frac{-3x^2 \, dx}{x^3 \sqrt{1 - x^3}} = \frac{-1}{3} \int \frac{2t \, dt}{(1 - t^2)t} = \frac{2}{3} \int \frac{dt}{t^2 - 1} \]

\[= \frac{2}{3} \left(\frac{1}{2} \log \left| \frac{t-1}{t+1} \right| \right) + C = \frac{1}{3} \log \left| \frac{\sqrt{1 - x^3} - 1}{\sqrt{1 - x^3} + 1} \right| + C \]

Solve a Problem

\(\int \frac{dx}{\sec x - 1} \) is equal to

(a) \(2 \log \left(\cos \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} - \frac{1}{2}} \right) + C \)

(b) \(\log \left(\cos \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} - \frac{1}{2}} \right) + C \)

(c) \(-2 \log \left(\cos \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} - \frac{1}{2}} \right) + C \)

(d) none of these
\[\int \frac{1}{\sec x - 1} \, dx = \int \frac{1 - \cos x}{\cos x} \, dx \]

\[= \sqrt{2} \int \frac{\sin \frac{x}{2}}{\sqrt{2} \cos^2 \frac{x}{2} - 1} \, dx = -2 \sqrt{2} \int \frac{dz}{\sqrt{2z^2 - 1}} \]

\[\text{(Putting } \cos \frac{x}{2} = z \Rightarrow \sin \frac{x}{2} \, dx = -2dz) \]

\[= -2 \int \frac{dz}{\sqrt{z^2 - \left(\frac{1}{\sqrt{2}}\right)^2}} \]

\[= -2 \log \left[z + \sqrt{z^2 - \left(\frac{1}{\sqrt{2}}\right)^2} \right] + C \]

\[= -2 \log \left(\cos \frac{x}{2} + \sqrt{\cos^2 \frac{x}{2} - \frac{1}{2}} \right) + C \]

Solve a tricky problem

\[\text{Solve } \int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \]

Solution:

\[\int \frac{\sqrt{\tan x}}{\sin x \cos x} \, dx \]

\[= \int \frac{\sin x}{\cos x \sin^2 x \cos^2 x} \, dx \]

\[\int \frac{1}{\sqrt{\sin x \cos^3 x}} \, dx \]

\[\int \frac{1}{\sin^4 x \cot^3 x} \, dx \]

\[= -\int \sec^2 x \cot^{-3/2} x \, dx \]

\[= \frac{2}{\sqrt{\cot x}} + C \]
Solve another problem

\[I = \int \sqrt{1 + \csc x} \, dx \]
\[= \int \sqrt{1 + \frac{1}{\sin x}} \cdot dx = \int \sqrt{\frac{\sin x + 1}{\sin x}} \cdot dx \]
\[= \int \sqrt{\frac{(1 + \sin x)(1 - \sin x)}{\sin x(1 - \sin x)}} \cdot dx \quad \text{[On rationalization]} \]
\[= \int \frac{1 - \sin^2 x}{\sin x - \sin^2 x} \cdot dx \quad \text{[} (a + b)(a - b) = a^2 - b^2 \text{]} \]
\[= \int \frac{\cos x}{\sqrt{\sin x - \sin^2 x}} \cdot dx \quad \text{[} \sin^2 A + \cos^2 A = 1 \text{]} \]
\[\sin x = z \Rightarrow \cos x \, dx = dz \]
\[I = \int \frac{1}{\sqrt{z^2 - z^2^2}} \cdot dz = \int \frac{1}{\sqrt{-z^2 - z}} \cdot dz \]
\[= \int \frac{1}{\sqrt{\frac{1}{4} - (z^2 - z + \frac{1}{4})}} \cdot dz \quad \text{[Add and subtract } \frac{1}{4} \text{ to the denom.]}
\[\therefore \left(\frac{1}{2} \text{ co-eff. of } x \right)^2 = \frac{1}{4} \]
\[= \int \frac{1}{\sqrt{(\frac{1}{2})^2 - (z - \frac{1}{2})^2}} \cdot dz \]
\[(z - \frac{1}{2}) = y \Rightarrow dz = dy \]
\[I = \int \frac{1}{\sqrt{(1/2)^2 - y^2}} \cdot dy \quad \text{[By using } \int \frac{1}{\sqrt{a^2 - x^2}} \cdot dx = \sin^{-1} \left(\frac{x}{a} \right) + c \text{]} \]
\[= \sin^{-1} \left(\frac{y}{1/2} \right) + c \]
\[= \sin^{-1} \left(\frac{z - 1/2}{1/2} \right) + c \quad \text{[} y = z - 1/2 \text{]} \]
Solve another Integral

\[I = \int \sqrt{\frac{1+x}{x}} \cdot dx \]
\[= \int \frac{1+x}{x} \cdot \sqrt{1+x} \cdot dx \]
\[= \int \left(\frac{(1+x)^2}{x(1+x)} \right) \cdot dx = \int \frac{1+x}{\sqrt{x+x^2}} \cdot dx \]

Let us write:
\[1+x = \lambda \cdot \frac{d}{dx} (x + x^2) + \mu \]
\[\Rightarrow 1+x = \lambda (1+2x) + \mu \]
\[\Rightarrow 1+x = 2\lambda x + \lambda + \mu \]

Comparing the coefficients of \(x \) and the constant terms, we have
\[1 = 2\lambda \Rightarrow \lambda = \frac{1}{2} \]
and
\[1 = \lambda + \mu \Rightarrow \mu = 1 - \frac{1}{2} = \frac{1}{2} \]

Putting the values of \(\lambda \) and \(\mu \) in (1),
\[1+x = \frac{1}{2} (1+2x) + \frac{1}{2} \]

\[\therefore I = \int \frac{1}{2} (1+2x) + \frac{1}{2} \cdot dx \]
\[= \frac{1}{2} \int \frac{1+2x}{\sqrt{x+x^2}} \cdot dx + \frac{1}{2} \int \frac{1}{\sqrt{x+x^2}} \cdot dx \]
\[\Rightarrow I = \frac{1}{2} I_1 + \frac{1}{2} I_2 \]

Now
\[I_1 = \int \frac{1+2x}{\sqrt{x+x^2}} \cdot dx \]
Put
\[x + x^2 = z \Rightarrow (1+2x) \cdot dx = dz \]
\[\therefore I_1 = \int \frac{1}{\sqrt{z}} \cdot dz = \int z^{-\frac{1}{2}} \cdot dz = \frac{z^{\frac{1}{2}}}{\frac{1}{2} + 1} + c_1 = 2\sqrt{z} + c_1 \]
and
\[I_2 = \int \frac{1}{\sqrt{x+x^2}} \cdot dx \]
\[
\int \frac{1}{\sqrt{(x^2 + x + \frac{1}{4}) - \frac{1}{4}}} \ dx

\rightarrow \text{Add and subtract } \frac{1}{4} \text{ to the denom.}
\]
\[
\int \frac{1}{\sqrt{x + \frac{1}{2}^2 - (\frac{1}{2})^2}} \ dx

\rightarrow \left(\frac{1}{2} \text{ coeff. of } x\right)^2 = \frac{1}{4}
\]

Put \(x + \frac{1}{2} = z \) \(\Rightarrow\) \(dx = dz \)

\[
I_2 = \int \frac{1}{\sqrt{z^2 - (\frac{1}{2})^2}} \ dz
\]

By using \(\int \frac{1}{\sqrt{x^2 - a^2}} \ dx = \log \left| x + \sqrt{x^2 - a^2} \right| + c \)

\[
= \log \left| z + \sqrt{z^2 - (\frac{1}{2})^2} \right| + c_2 = \log \left| (x + \frac{1}{2}) + \sqrt{(x + \frac{1}{2})^2 - \frac{1}{4}} \right| + c_2
\]

\[
= \log \left| x + \frac{1}{2} \right| + \sqrt{x^2 + x} \right| + c_2
\]

\[\therefore \text{ From equation (2),}
I = \frac{1}{2} I_1 + \frac{1}{2} I_2 \]

[Using (3) and (4)]
Solve another problem

\[I = \int \frac{ax^3 + bx}{x^4 + c^2} \, dx = \int \frac{ax^3}{x^4 + c^2} \, dx + \int \frac{bx}{x^4 + c^2} \, dx \]

\[= a \int \frac{x^3}{x^4 + c^2} \, dx + b \int \frac{x}{x^4 + c^2} \, dx \]

\[\Rightarrow \quad I = a \, I_1 + b \, I_2 \]

Now

\[I_1 = \int \frac{x^3}{x^4 + c^2} \, dx \]

\[= \frac{1}{4} \int \frac{4x^3}{x^4 + c^2} \, dx \]

\[= \frac{1}{4} \log |x^4 + c^2| + c_1 \]

[Multiply and divided by 4]

\[\Rightarrow \quad \int f'(x) \cdot \frac{1}{f(x)} \, dx = \log |f(x)| + c \]

\[\text{[Multiply and divided by 2]} \]

And

\[I_2 = \int \frac{x}{x^4 + c^2} \, dx \]

\[= \frac{1}{2} \int \frac{2x}{(x^2 + c^2)^2} \, dx \]

Put \(x^2 = z \quad \Rightarrow \quad 2x \, dx = dz \)

\[= \frac{1}{2} \int \frac{1}{z^2 + c^2} \, dz \]

[By using \(\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + c \)]
Solve Integration root linear plus root linear in denominator

\[I = \int \frac{dx}{\sqrt{2x+3} + \sqrt{x+2}}, \] then \(I \) equals

(a) \[2(u - v) + \log \left| \frac{u - 1}{u + 1} \right| + \log \left| \frac{v - 1}{v + 1} \right| + C \]

\(u = \sqrt{2x+3}, \ v = \sqrt{x+2} \)

(b) \[\log \left| \frac{\sqrt{x+2} + \sqrt{2x+3}}{\sqrt{x+2} - \sqrt{2x+3}} \right| + C \]

(c) \[\log \left(\sqrt{x+2} + \sqrt{2x+3} \right) + C \]

(d) is transcendental function in \(u \) and \(v \), \(u = \sqrt{2x+3}, \ v = \sqrt{x+2} \)

Ans. (a), (d)
\[I = \int \frac{\sqrt{2x + 3} - \sqrt{x + 2}}{x + 1} \, dx \]
\[= I_1 - I_2 \]

where \[I_1 = \int \frac{\sqrt{2x + 3}}{x + 1} \, dx \] and \[I_2 = \int \frac{\sqrt{x + 2}}{x + 1} \, dx \]

Put \(2x + 3 = t^2 \) in \(I_1 \), so that
\[I_1 = \int \frac{2t^2}{t^2 - 1} \, dt = 2 \int \left[1 + \frac{1}{t^2 - 1} \right] \, dt \]
\[= 2 \left[t + \frac{1}{2} \log \left(\frac{t - 1}{t + 1} \right) \right] \]

In \(I_2 \), put \(x + 2 = y^2 \), so that
\[I_2 = \int \frac{2y^2}{y^2 - 1} \, dy = 2y + \log \left| \frac{y - 1}{y + 1} \right| \]

Thus,
\[I = 2 \left(\sqrt{2x + 3} - \sqrt{x + 2} \right) + \log \left| \frac{\sqrt{2x + 3} - 1}{\sqrt{2x + 3} + 1} \right| \]
\[+ \log \left| \frac{\sqrt{x + 2} - 1}{\sqrt{x + 2} + 1} \right| + C \]
Solve another Problem

\[
\text{Evaluate } \int \frac{\sin 2x \, dx}{(a + b \cos x)^2}.
\]

Solution:

We have \(I = \int \frac{\sin 2x \, dx}{(a + b \cos x)^2} = 2 \int \frac{\sin x \cos x \, dx}{(a + b \cos x)^2} \)

Now put \(a + b \cos x = t \)

so that \(-b \sin x \, dx = dt. \)

Also \(\cos x = \frac{(t-a)}{b}. \)

\[
\therefore I = -\frac{2}{b} \int \frac{(t-a)b}{t^2} \, dt = -\frac{2}{b^2} \int \left[\frac{t}{t^2} - \frac{a}{t^2} \right] \, dt
\]

\[
= -\frac{2}{b^2} \int \left[\frac{1}{t} - \frac{a}{t^2} \right] \, dt = -\frac{2}{b^2} \left[\log t + \frac{a}{t} \right]
\]

\[
= -\frac{2}{b^2} \left[\log(a + b \cos x) + \frac{a}{a + b \cos x} \right].
\]
A special Integral

\[\int \frac{(1 - \sqrt{1 + x + x^2})^2}{x^2 \sqrt{1 + x + x^2}} \, dx \]

Here we set \(\sqrt{1 + x + x^2} = xt + 1 \), so that

\[x = \frac{2t - 1}{1 - t^2}, \quad dx = \frac{2t^2 - 2t + 2}{(1 - t^2)^2} \, dt \] and

\[(1 - \sqrt{1 + x + x^2}) = \frac{-2t^2 + t}{(1 - t^2)} \]

Substitution of these values in the given integral transforms the problem in the form

\[\int \frac{(-2t^2 + t)^2 (1 - t^2)^2 (1 - t^2)^2 (2t^2 - 2t + 2)}{(1 - t^2)^2 (2t - 1)^2 (t^2 - t + 1)(1 - t^2)^2} \, dt \]

\[= + 2 \int \frac{t^2}{1 - t^2} \, dt = -2t + \ln \left| \frac{1 + t}{1 - t} \right| + C \]
An advanced example

\[I = \int \frac{(x+1)}{x(1+xe^x)^2} \, dx \]

\[I = \int \frac{e^x(x+1)}{x e^x (1+xe^x)^2} \, dx \]

put \(1 + xe^x = t, \ (xe^x + e^x) \, dx = dt \)

\[I = \int \frac{dt}{(t-1)t^2} = \int \left(\frac{1}{1-t} + \frac{1}{t} + \frac{1}{t^2} \right) \, dt \]

\[= -\log|1-t| + \log|t| - \frac{1}{t} + C = \log\left| \frac{t}{1-t} \right| - \frac{1}{t} + C \]

\[= \log\left| \frac{1+xe^x}{-xe^x} \right| - \frac{1}{1+xe^x} + C = \log\left(\frac{1+xe^x}{xe^x} \right) - \frac{1}{1+xe^x} + C \]
Practice Example

Let \(f(x) \) be a function defined by \(f(x) = \int_{1}^{x} (x^2 - 3x + 2) \, dx \), \(1 \leq x \leq 3 \), then the range of \(f(x) \) is

(a) \(\left[-\frac{1}{4}, 2 \right] \)
(b) \(\left[-\frac{1}{4}, 4 \right] \)
(c) \([0, 2] \)
(d) none of these

Solution:

(a) We have,
\[
 f'(x) = x (x^2 - 3x + 2) = x (x - 1) (x - 2)
\]
Clearly, \(f'(x) \leq 0 \) in \(1 \leq x \leq 2 \) and \(f'(x) \geq 0 \) in \(2 \leq x \leq 3 \).
\[
 \therefore \quad f'(x) \text{ is monotonic decreasing in } [1, 2] \text{ and monotonic increasing in } [2, 3].
\]
\[
 \therefore \quad \text{Min. } f(x) = f(2) = \int_{1}^{2} x(x^2 - 3x + 2) \, dx
\]
\[
 = \left. \frac{x^4}{4} - x^3 + x^2 \right|_{1}^{2} = -\frac{1}{4}
\]
Max. \(f(x) \) is the greatest among \((f(1), f(3))\)

Now, \(f(1) = \int_{1}^{1} x(x^2 - 3x + 2) \, dx = 0 \)

\[
 f(3) = \int_{1}^{3} x(x^2 - 3x + 2) \, dx
\]
\[
 = \left. \frac{x^4}{4} - x^3 + 2 \right|_{1}^{3} = 2 \quad \therefore \quad \text{Max. } f(x) = 2
\]
Hence, Range = \(\left[-\frac{1}{4}, 2 \right] \)
Practice Example

\[\int_{-\pi}^{\pi} \cot^{-1}(\tan x) \, dx \]

(a) \(7\pi^2\) \(\quad\) (b) \(\frac{7\pi^2}{2}\)
(c) 0 \(\quad\) (d) \(\frac{3\pi^2}{2}\)

Solution:

\[I = \int_{-\pi}^{\pi} \cot^{-1}(\tan x) \, dx \]
\[= 7 \int_{0}^{\pi} \cot^{-1}(\cot(\pi/2 - x)) \, dx \] \(\quad\) ...(1)

(\because\ Period\ is\ \pi)

Since \(\cot^{-1}(\cot x) = \begin{cases} x, & 0 < x < \pi/2 \\ \pi + x, & \pi/2 < x < \pi \end{cases}\)

\[I = 7 \left\{ \int_{0}^{\pi/2} \left(\frac{\pi}{2} - x \right) \, dx + \int_{\pi/2}^{\pi} \left(\frac{\pi}{2} + x - x \right) \, dx \right\} \]
\[= 7 \left\{ \left[\frac{x^2}{2} \right]_{0}^{\pi/2} + \left[\frac{3\pi}{2} - x^2 \right]_{\pi/2}^{\pi} \right\} \]
\[= 7 \left\{ \frac{\pi^2}{4} - \frac{\pi^2}{8} + \frac{3\pi^2}{2} - \frac{3\pi^2}{4} + \frac{\pi^2}{8} \right\} \]
\[= \frac{7\pi^2}{2} \]
Practice Example

\[f(x) \text{ is a continuous function for all real values of } x \]
and satisfies \[\int_0^x f(t) \, dt = \int_0^x f(t) \, dt + \frac{16}{8} + \frac{x^6}{3} + k, \]
The value of \(k \) is
(a) \(\frac{167}{840} \)
(b) \(\frac{167}{840} \)
(c) \(\frac{17}{38} \)
(d) none of these

Solution:

(b) We have,
\[\int_0^x f(t) \, dt = \int_0^x f(t) \, dt + \frac{16}{8} + \frac{x^6}{3} + k \quad \ldots (1) \]
For \(x = 1, \int_0^1 f(t) \, dt = 0 + \frac{1}{8} + \frac{1}{3} + k = \frac{11}{24} + k \quad \ldots (2) \]
Differentiating both sides of (1), w.r.t. \(x \), we get
\[f(x) = -x^2 f(x) + 2x^{15} + 2x^3 \]
\[\Rightarrow f(x) = \frac{2(x^{15} + x^3)}{1 + x^2} \]
\[\therefore \int_0^x f(t) \, dt = 2 \int_0^1 \frac{t^{15} + t^3}{1 + t^2} \, dt = \frac{11}{24} + k \quad \text{ (using (2))} \]
\[\Rightarrow 2 \int_0^1 (t^{15} - t^{11} + t^9 - t^7 + t^5) \, dt = \frac{11}{24} + k \]
\[\Rightarrow 2 \left(\frac{1}{14} - \frac{1}{12} + \frac{1}{10} - \frac{1}{8} + \frac{1}{6} \right) = \frac{11}{24} + k \]
\[\Rightarrow k = \frac{167}{840} \]
Practice Example

If \(I = \int_{-\pi}^{\pi} \frac{e^{\sin x}}{e^{\sin x} + e^{-\sin x}} \, dx \) \hspace{1cm} (1)

then \(I \) equals

(a) \(2\pi \) \hspace{2cm} (b) \(\pi \)

(c) \(\pi/2 \) \hspace{2cm} (d) \(\pi/4 \)

Ans. (b)

Solution Using \(\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \),
we get

\[
I = \int_{-\pi}^{\pi} \frac{e^{\sin(-x)}}{e^{\sin(-x)} + e^{-\sin(-x)}} \, dx
\]

\[
\Rightarrow I = \int_{-\pi}^{\pi} \frac{e^{-\sin x}}{e^{-\sin x} + e^{\sin x}} \, dx \hspace{1cm} (2)
\]

Adding (1) and (2), we get

\[
2I = \int_{-\pi}^{\pi} \frac{e^{\sin x} + e^{-\sin x}}{e^{\sin x} + e^{-\sin x}} \, dx = 2\pi
\]

\[
\Rightarrow I = \pi.
\]
Practice Example

If \(I = \int_{0}^{a} \frac{a-x}{\sqrt{a+x}} \, dx, \ a > 0, \) then \(I \) equals

(a) \(\frac{1}{2} \left(a - \frac{\pi}{2} \right) \)
(b) \(\frac{a}{2} (\pi - 1) \)
(c) \(\frac{1}{\sqrt{2}} a(\pi - 1) \)
(d) \(a \left(\frac{\pi}{2} - 1 \right) \)

Ans. (d)

Solution We can write

\[
I = \int_{0}^{a} \frac{a-x}{\sqrt{a^2-x^2}} \, dx \\
= \left[a \sin^{-1} \left(\frac{x}{a} \right) + \sqrt{a^2-x^2} \right]_{0}^{a} \\
= a \left(\frac{\pi}{2} - 1 \right).
\]
Practice Example

If \(f(x) = \frac{x-1}{x+1} \), then \(f^2(x) = f(f(x)) = \frac{\frac{x-1}{x+1} - 1}{\frac{x-1}{x+1} + 1} = \frac{-1}{x} \).

2, 3, ... and \(\phi(x) = f^{1998}(x) \), then \(\int_{1/e}^{1} \phi(x) \, dx = \) ___.

(a) 1 \hspace{1cm} (b) -1
(c) 0 \hspace{1cm} (d) none of these

Solution:

(b) We have, \(f(x) = \frac{x-1}{x+1} \)

\[f^2(x) = f(f(x)) = f\left(\frac{x-1}{x+1}\right) = \frac{\frac{x-1}{x+1} - 1}{\frac{x-1}{x+1} + 1} = \frac{-1}{x} \]

\[f^4(x) = f^2(f^2(x)) = f^2\left(\frac{-1}{x}\right) = \frac{-1}{x} = x \]

\[\phi(x) = f^{1998}(x) = f^2(f^{1996}(x)) = f^2(x) \]

\[\therefore \quad f^{1996}(x) = \frac{(f^{4})(f^{4}(f^{4}...f^{4})(x))}{499 \text{ times}} = x \]

\[\therefore \quad \phi(x) = -\frac{1}{x} \]

\[\int_{1/e}^{1} \phi(x) \, dx = \int_{1/e}^{1} \left(-\frac{1}{x}\right) \, dx = \left(\log_e x\right) \bigg|_{1/e}^{1} \]

\[= -(\log_e 1 - \log_e 1/e) = -(0 + 1) = -1 \]
Practice Example

If \(I = \int_0^\pi e^{(1/2)\cos t} \left[2\sin \left(\frac{1}{2} \cos x \right) + 3\cos \left(\frac{1}{2} \cos x \right) \right] \sin x \, dx \), then \(I \) equals

(a) \(7\sqrt{e} \cos \left(\frac{1}{2} \right) \)
(b) \(7\sqrt{e} \left[\cos \left(\frac{1}{2} \right) - \sin \left(\frac{1}{2} \right) \right] \)
(c) 0
(d) none of these

Ans. (d)

Solution

Put \(\frac{1}{2} \cos x = t \), so that \(-\sin x \, dx = 2\,dt \) and

\[I = \int_{-\sqrt{2}}^{\sqrt{2}} e^t (2 \sin t + 3 \cos t) (-2) \, dt \]

As \(e^t \sin t \) is an odd function, and \(e^t \cos t \) is an even function,

\[I = 6 \left[\sqrt{e} \cos \left(\frac{1}{2} \right) - 1 \right] + 6e^t \sin t \bigg|_{-\sqrt{2}}^{\sqrt{2}} - 6\int_{-\sqrt{2}}^{\sqrt{2}} e^t \cos t \, dt \]

\[\Rightarrow 7I = 6 \sqrt{e} \left(\cos \left(\frac{1}{2} \right) + \sin \left(\frac{1}{2} \right) - 1 \right) \]
Practice Example

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{2^{k/2}}{2 \cdot 2^k (k!)^2} \quad \text{is equal to}
\]

(a) \(\frac{2k!}{2^{2k} (k!)^2} \)
(b) \(\frac{2k!}{2^k (k!)^2} \)
(c) \(\frac{2k!}{2^k (k!)^2} \)
(d) none of these

Solution:

(a) \(\lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{\pi/2}{\sin^{2k} \frac{r\pi}{2n}} \)

\[
= \frac{\pi}{2} \int_{0}^{\pi/2} \frac{\sin^{2k} t \, dt}{\sin^{2k} x} = \frac{\pi}{2} \int_{0}^{\pi/2} \frac{t^{2k} \, dt}{\sin^{2k} t}
\]

[Putting \(\frac{\pi x}{2} = t \Rightarrow dx = \frac{2}{\pi} dt \)]

\[
= \frac{2}{\pi} \frac{(2k-1)(2k-3)\cdots 1 \pi}{2k(2k-2)\cdots 2}
\]

\[
= \frac{2^k [k(k-1)(k-2)\cdots 1][2k(2k-2)\cdots 2]}{2k(2k-1)(2k-2)(2k-3)\cdots 2 \cdot 1}
\]

\[
= \frac{(2k)!}{2^{2k} \cdot (k!)^2}.
\]
Practice Example

If \(I_1 = \int_0^{\pi/2} f(2x) \sin x \, dx \)
and \(I_2 = \int_0^{\pi/4} f(\cos 2x) \cos x \, dx \),
then \(\frac{I_1}{I_2} \) equals
(a) 1 \hspace{2cm} (b) \frac{1}{\sqrt{2}}
(c) \sqrt{2} \hspace{2cm} (d) 2

Ans. (c)

Solution
Using \(\int_a^b f(x) \, dx = \int_a^b f(a-x) \, dx \), we get

\[
I_1 = \int_0^{\pi/2} f[2(\pi - x)] \sin(\pi/2 - x) \, dx
= \int_0^{\pi/2} f(\sin 2x) \cos x \, dx \tag{2}
\]

Adding (1) and (2) we get

\[
2I_1 = \int_0^{\pi/2} f(\sin 2x) (\sin x + \cos x) \, dx
= \sqrt{2} \int_0^{\pi/4} f(\sin 2x) \cos \left(x - \frac{\pi}{4} \right) \, dx
\]

Put \(x = \pi/4 + \theta \), so that

\[
2I_1 = \sqrt{2} \int_{-\pi/4}^{\pi/4} f[2(\pi/2 + 2\theta)] \cos \theta \, d\theta
= \sqrt{2} \int_{-\pi/4}^{\pi/4} f(\cos 2\theta) \cos \theta \, d\theta
= 2\sqrt{2} I_2 \text{ as in integrand is an even function}
\Rightarrow I_1/I_2 = \sqrt{2}.
Practice Example

If \(I = \int_{-1}^{1} |x \sin \pi x| \, dx \), then \(I \) equals

(a) \(\frac{1}{\pi} \)
(b) \(\frac{2}{\pi} \)
(c) \(\frac{4}{\pi} \)
(d) \(\frac{5}{\pi} \)

Ans. (d)

Solution We can write

\[
I = \int_{-1}^{1} |x \sin \pi x| \, dx = \int_{-1}^{1} x \sin \pi x \, dx
\]

As \(|x \sin \pi x| \) is an even function, \(\sin \pi x \geq 0 \), for \(0 \leq \pi x \leq \pi \) and \(\sin \pi x \leq 0 \) for \(\pi \leq \pi x \leq 2\pi \), we get

\[
I = 2 \int_{0}^{1} x \sin \pi x \, dx - \int_{1}^{2} x \sin \pi x \, dx
\]

But \(\int x \sin \pi x \, dx = \frac{-x \cos \pi x}{\pi} + \frac{1}{\pi} \int \cos \pi x \, dx \)

\[
= \frac{-x}{\pi} \cos \pi x + \frac{1}{\pi^2} \sin \pi x
\]

Thus,

\[
I = 2 \left(-\frac{1}{\pi} \cos \pi x + 0 \right) - \left(-\frac{2}{\pi} \cos 2\pi + \frac{1}{\pi} \cos \pi \right)
\]

\[
= \frac{5}{\pi}
\]
Practice Example

If \(f(x) = \int_0^x (1 + t^3)^{-1/2} dt \) and \(g \) is the inverse of \(f \), then the value of \(\frac{g''}{g^2} \) is

(a) \(\frac{1}{2} \)
(b) \(\frac{3}{2} \)
(c) 1
(d) cannot be determined

Solution:

(b). We have,

\[
f(x) = \int_0^x (1 + t^3)^{-1/2} dt
\]

\Rightarrow \quad f(g(x)) = \int_0^{g(x)} (1 + t^3)^{-1/2} dt

\Rightarrow \quad x = \int_0^{g(x)} (1 + t^3)^{-1/2} dt

[g \text{ is inverse of } f \Rightarrow f(g(x)) = x]

Differentiating w.r.t. \(x \), we have

\[
1 = (1 + g^3)^{-1/2} \cdot g'
\]

i.e.,

\[
(g')^2 = 1 + g^3
\]

Differentiating again w.r.t. \(x \), we have

\[
2g'g'' = 3g^2g'
\]

\Rightarrow \quad \frac{g''}{g^2} = \frac{3}{2}.
Practice Example

Let \(f(x) = \frac{|x|}{x} \) if \(x \neq 0 \) and \(f(0) = 0 \) and \(a, b \in \mathbb{R} \) be such that \(a < b \). Then value of

\[
I = \int_{a}^{b} f(x) \, dx \quad \text{is}
\]

(a) \(|b| - |a| \) \hspace{1cm} (b) \(\frac{1}{2} (b^2 - a^2) \)

(c) \(\max \{ |a|, |b| \} \) \hspace{1cm} (d) \(\min \{ |a|, |b| \} \)

Ans. (a)

Solution

Note that

\[
f(x) = \begin{cases}
-1 & \text{if } x < 0 \\
0 & \text{if } x = 0 \\
1 & \text{if } x > 0
\end{cases}
\]

If \(0 \leq a < b \), then

\[
I = \int_{a}^{b} \, dx = b - a = |b| - |a|
\]

If \(a < 0 \leq b \), then

\[
I = \int_{a}^{b} (-1) \, dx + \int_{0}^{b} 1 \, dx = a + b = b - (-a) = |b| - |a|
\]

If \(a < b < 0 \), then

\[
I = \int_{a}^{b} (-1) \, dx = -b + a = |b| - |a|.
\]
Practice Example

If \(I_n = \int_{0}^{\pi/2} \cos^n x \cos nx \, dx \), then \(I_1, I_2, I_3 \) are in

(a) A.P. \hspace{1cm} (b) G.P.
(c) H.P. \hspace{1cm} (d) none of these

Solution:

\[
I_n = \int_{0}^{\pi/2} \cos^n x \cos nx \, dx
\]

\[
= \left[\cos^n x \cdot \frac{\sin nx}{n} \right]_{0}^{\pi/2} - \int_{0}^{\pi/2} \frac{n \cos^{n-1} x (-\sin x)}{n} \cdot \frac{\sin nx}{n} \, dx
\]

\[
= 0 + \int_{0}^{\pi/2} \cos^{n-1} x \sin x \sin nx \, dx
\]

\[
= \int_{0}^{\pi/2} \cos^{n-1} x \cos (n-1)x - \int_{0}^{\pi/2} \cos^{n} x \cos nx \, dx
\]

[Using the identity]
\[
\cos(n-1)x = \cos nx \cos x + \sin nx \sin x
\]
\[
i.e., \quad \sin nx \sin x = \cos (n-1)x - \cos nx \cos x
\]

\[
= \int_{0}^{\pi/2} \cos^{n-1} x \cos (n-1)x - \int_{0}^{\pi/2} \cos^{n} x \cos nx \, dx
\]

\[
i.e., \quad \frac{I_n}{I_{n-1}} = \frac{1}{2} \Rightarrow I_1, I_2, I_3 \text{ are in G.P.}
\]
Practice Example

\[\int_0^{k\pi} \sin \left(\frac{2x}{\pi} \right) \, dx = A \cdot \frac{\sin k \sin \left(\frac{k + 1}{2} \right)}{\sin \frac{1}{2}}, \] where \(A \) is equal to

(a) \(\pi \) \hspace{1cm} (b) \(\frac{\pi}{4} \) \hspace{1cm} (c) \(\frac{\pi}{2} \) \hspace{1cm} (d) none of these

Solution :

\[\int_0^{k\pi} \sin \left(\frac{2x}{\pi} \right) \, dx \]

\[= \int_0^{\pi/2} \sin 0 \, dx + \int_{\pi/2}^{2\pi/2} \sin 1 \, dx + \int_{2\pi/2}^{3\pi/2} \sin 2 \, dx + \ldots \]

\[+ \int_{(2k-1)\pi/2}^{2k\pi/2} \sin(2k-1) \, dx \]

\[= \frac{\pi}{2} \left[\sin 1 + \sin 2 + \sin 3 + \ldots + \sin (2k - 1) \right] \]

\[= \frac{\pi}{2} \left[\frac{1}{2} \sin \left(\frac{1}{2} \right) + \frac{1}{2} \sin \left(\frac{2}{2} \right) + \frac{1}{2} \sin \left(\frac{3}{2} \right) + \ldots + \frac{1}{2} \sin \left(\frac{2k - 1}{2} \right) + \frac{1}{2} \sin \left(\frac{1}{2} \right) \right] \]

\[= \frac{\pi}{2} \left[\frac{1}{2} \sin \left(\frac{2k - 1}{2} \right) \right] \]
\[
\begin{align*}
\pi &= \frac{1}{2} \left[\cos \frac{1}{2} - \cos \frac{3}{2} + \cos \frac{3}{2} - \cos \frac{5}{2} + \ldots \right] \\
&= \frac{2}{\sin \frac{1}{2}} \left[\cos \left(2k - \frac{3}{2}\right) - \cos \left(2k + \frac{1}{2}\right)\right] \\
&= \frac{2}{\sin \frac{1}{2}} \frac{\sin k \cdot \sin \left(k + \frac{1}{2}\right)}{\sin \frac{1}{2}} \\
\therefore A &= \pi 2.
\end{align*}
\]
Practice Example

For $x > 0$, let $f(x) = \int_{1}^{x} \frac{\ln t}{1+t} \, dt$. Then, the value of

$$f(e) + f\left(\frac{1}{e}\right)$$

is

(a) 1
(b) 2
(c) $\frac{1}{2}$
(d) none of these.

Solution:

(c). We have,

$$f(x) = \int_{1}^{x} \frac{\ln t}{1+t} \, dt, \quad x > 0 \quad (1)$$

$$\Rightarrow \quad f\left(\frac{1}{x}\right) = \int_{1}^{\frac{1}{x}} \frac{\ln t}{1+t} \, dt$$

Put $y = \frac{1}{t} \Rightarrow dt = \frac{-1}{y^2} \, dy$

$$\therefore \quad f\left(\frac{1}{x}\right) = \int_{1}^{\frac{1}{x}} \frac{\ln \left(\frac{1}{y}\right)}{1 + \frac{1}{y}} \left(-\frac{1}{y^2}\right) \, dy$$

$$= \int_{1}^{\frac{1}{x}} \frac{\ln y}{y(1+y)} \, dy$$

$$= \int_{1}^{\frac{1}{x}} \frac{\ln t}{(1+t)t} \, dt \quad (2)$$

From (1) and (2),

$$f(x) + f\left(\frac{1}{x}\right) = \int_{1}^{x} \frac{(1 + \frac{1}{x}) \ln t}{1+t} \, dt$$

$$= \int_{1}^{x} \frac{\ln t}{t} \, dt = \frac{\ln x}{2}$$

$$\Rightarrow \quad f(e) + f\left(\frac{1}{e}\right) = \frac{(\ln e)^2}{2} = \frac{1}{2}.$$
Practice Example

If \(I_n = \int_0^1 (1-x^a)^n \, dx \), then \(\frac{I_n}{I_{n+1}} = 1 + \frac{1}{k} \), where \(k = \)

(a) \((n+1)a\)
(b) \(na\)
(c) \((n-1)a\)
(d) none of these

Solution:

(a) We have,

\[
I_{n+1} = \int_0^1 (1-x^a)^{n+1} \, dx
\]

\[
= \left[x(1-x^a)^{n+1} \right]_0^1 + (n+1)a \int_0^1 x^a (1-x^a)^n \, dx
\]

\[
= (n+1)a \int_0^1 (x^a-1+1)(1-x^a)^n \, dx
\]

\[
= (n+1)a \int_0^1 (1-x^a)^n \, dx - (n+1)a \int_0^1 (1-x^a)^{n+1} \, dx
\]

\[
= (n+1)a I_n - (n+1)a I_{n+1}
\]

\[
\Rightarrow \frac{I_n}{I_{n+1}} = 1 + \frac{1}{(n+1)a} \quad \therefore k = (n+1)a
\]
Practice Example

If \(I = \int_a^b \log \log x + \frac{1}{(\log x)^2} \) \(dx \), then \(I \)
equals(a) \(\alpha \log \log \alpha - \beta \log \log \beta \)
(b) \(\frac{1}{\alpha} - \frac{1}{\beta} + \log \log \alpha - \log \log \beta \)
(c) \(\frac{\beta - \alpha}{\alpha \beta} + \alpha \log \log \alpha - \beta \log \log \beta \)
(d) none of these

Ans. (d)

Solution

Put \(\log x = t \), or \(x = e^t \), so that
\[I = \int_a^b \left[\log t + \frac{1}{t^2} \right] e^t \, dt \]
where \(a = \log \alpha, b = \log \beta \)

\[= \int_a^b \left(\log t + \frac{1}{t} + \left(-\frac{1}{1} + \frac{1}{t} \right) \right) e^t \, dt \]
\[= \left[\log t - \frac{1}{t} \right] e^t \bigg|_a^b \]
[use \(\int e^t \left(f(x) + f'(x) \right) = e^x f(x) \)]
\[= \left(\log b - \frac{1}{b} \right) e^b - \left(\log a - \frac{1}{a} \right) e^a \]
\[= \left(\log \log \beta - \frac{1}{\log \beta} \right) \beta - \left(\log \log \alpha - \frac{1}{\log \alpha} \right) \alpha \]

Practice Example

Let \(\phi(x) = \int_0^x g(t) \, dt \), where the function \(g \) is such that
\[-\frac{1}{2} \leq g(t) \leq 0, \quad \forall \ t \in [0, 1] \]
\[\frac{1}{2} \leq g(t) \leq 1, \quad \forall \ t \in [1, 3] \]
\[g(t) \leq 1, \quad \forall \ t \in [3, 4] \]

Then, \(\phi(4) \) satisfies the inequality

(a) \(\frac{1}{2} \leq \phi(4) \leq 3 \)
(b) \(0 \leq \phi(4) \leq 2 \)
(c) \(\phi(4) \leq 3 \)
(d) none of these
Solution:

\[\phi(4) = \int_{0}^{4} g(t) \, dt = \int_{0}^{1} g(t) \, dt + \int_{1}^{3} g(t) \, dt + \int_{3}^{4} g(t) \, dt \]

But

\[\frac{-1}{2} \leq \int_{0}^{1} g(t) \, dt \leq 0.1 \]

\[\frac{1}{2} \leq \int_{1}^{3} g(t) \, dt \leq 0.2 \]

\[\int_{3}^{4} g(t) \, dt \leq 1.1 \]

Adding the above inequalities, we get \(\phi(4) \leq 3 \)

Practice Example

If \(I = \int_{0}^{1} \frac{\sqrt{x} \, dx}{(1+x)(2+x)(3+x)} \), then \(I \)
equals

(a) \(\frac{\pi}{2} (2\sqrt{2} - \sqrt{3} - 1) \)

(b) \(\frac{\pi}{2} (2\sqrt{2} + \sqrt{3} - 1) \)

(c) \(\frac{\pi}{2} (2\sqrt{2} - \sqrt{3} + 1) \)

(d) none of these

Ans. (a)

Solution: Put \(\sqrt{x} = t \) or \(x = t^2 \), so that

\[I = 2 \int_{0}^{1} \frac{t^2}{(1+t^2)(2+t^2)(3+t^2)} \, dt \]

\[I = \int_{0}^{1} \left(-\frac{1}{1+t^2} + \frac{4}{2+t^2} - \frac{3}{3+t^2} \right) \, dt \]

\[= \left[-\tan^{-1} t + \frac{4}{\sqrt{2}} \tan^{-1} \left(\frac{t}{\sqrt{2}} \right) - \frac{3}{\sqrt{3}} \tan^{-1} \left(\frac{t}{\sqrt{3}} \right) \right]_{0}^{1} \]

\[= -\frac{\pi}{2} + 2\sqrt{2} \left(\frac{\pi}{2} \right) - \sqrt{3} \left(\frac{\pi}{2} \right) \]

\[= \frac{\pi}{2} (2\sqrt{2} - \sqrt{3} - 1). \]
Practice Example

\[\int_1^4 (\{x\}^{[x]} \, dx, \text{ where } \{ \cdot \} \text{ and } [\cdot] \text{ denote the fractional part and greatest integer function, respectively, is equal to} \]

(a) \(1\) \quad (b) \(\frac{12}{13}\)

(c) \(\frac{13}{12}\) \quad (d) \(\frac{6}{7}\)

Solution:

(c). We have,

\[\int_1^4 (\{x\}^{[x]} \, dx = \int_1^2 (x-[x])^{[x]} \, dx + \int_2^3 (x-[x])^{[x]} \, dx + \int_3^4 (x-[x])^{[x]} \, dx \]

\[= \int_1^2 (x-1)^1 \, dx + \int_2^3 (x-2)^2 \, dx + \int_3^4 (x-3)^3 \, dx \]

\[= \left[\frac{(x-1)^2}{2} \right]_1^2 + \left[\frac{(x-2)^3}{3} \right]_2^3 + \left[\frac{(x-3)^4}{4} \right]_3^4 \]

\[= \left(\frac{1}{2} - 0 \right) + \left(\frac{1}{3} - 0 \right) + \left(\frac{1}{4} - 0 \right) = \frac{13}{12} \]
Practice Example

The value \(\int_0^1 \cot^{-1}(1 + x^2 - x) \, dx \) is

(a) \(\pi/2 - \log 2 \) \hspace{1cm} (b) \(\pi - \log 2 \)

(c) \(\pi/4 - \log 2 \) \hspace{1cm} (d) \(2 \int_0^1 \tan^{-1} x \, dx \)

Ans. (a), (d)

Solution \(\cot^{-1}(1 + x^2 - x) = \tan^{-1}\left(\frac{x + 1 - x}{1 - x(1 - x)}\right) \)

\[= \tan^{-1} x + \tan^{-1}(1 - x) \]

\[I = \int_0^1 \cot^{-1}(1 + x^2 - x) \, dx = \int_0^1 \tan^{-1} x \, dx + \int_0^1 \tan^{-1}(1 - x) \, dx \]

\[= \int_0^1 \tan^{-1} x \, dx + \int_0^1 \tan^{-1}(1 - x) \, dx = 2\int_0^1 \tan^{-1} x \, dx \]

\[= 2x \tan^{-1} x \bigg|_0^1 - \int_0^1 \frac{2x}{1 + x^2} \, dx \]

\[= 2 \tan^{-1}(1) - \log(1 + x^2) \bigg|_0^1 \]

\[= 2(\pi/4) - \log 2 = \pi/2 - \log 2 \]
Practice Example

If \([\cdot] \) denotes the greatest integer function, then

\[
\int_{0}^{2} [x + [x + [x]]] \, dx =
\]

(a) 1 \quad (b) 2 \quad (c) 3 \quad (d) 0

Solution:

\[
I = \int_{0}^{2} [x + [x + [x]]] \, dx
\]

\[
= \int_{0}^{2} [x + 2[x]] \, dx \quad (\because [x + \text{Integer}] = [x] + \text{Integer} \Rightarrow [x + [x]] = [x] + [x])
\]

\[
= \int_{0}^{2} [x] + 2[x] \, dx = \int_{0}^{2} 3[x] \, dx
\]

\[
= 3 \left\{ \int_{0}^{1} [x] \, dx + \int_{1}^{2} [x] \, dx \right\}
\]

\[
= 3 \left\{ \int_{0}^{1} 0 \, dx + \int_{1}^{2} 1 \, dx \right\} = 3 \{2 - 1\} = 3.
\]
Practice Example

The value of \[\int_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] is

(a) \(\left(\int_0^{\pi/4} \frac{\sin 2x}{\cos^4 x + \sin^4 x} \, dx \right)^2 \)
(b) \(\pi^2/16 \)
(c) \(3\pi^2/4 \)
(d) \(\pi^2/2 \)

Solution

\[l = \int_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx = \int_0^{\pi/2} \frac{(\pi/2 - x) \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]

\[= \frac{\pi}{2} \int_0^{\pi/2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx - \int_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]

\[\Rightarrow 2l = \frac{\pi}{2} \int_0^{\pi/2} \frac{\sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \]

\[\Rightarrow l = \frac{\pi}{4} \int_0^{\pi/2} \left(1 - \frac{1}{2} \sin^2 2x \right) \, dx = \frac{\pi}{4} \int_0^{\pi/2} \frac{\sin 2x}{1 + \cos^2 2x} \, dx \]

\[= -\frac{\pi}{8} \int_1^{-1} \frac{dt}{1 + t^2} = -\frac{\pi}{8} [\tan^{-1} (-1) - \tan^{-1} 1] = \frac{\pi^2}{16} \]

The integrand in a is a periodic function with period \(\pi \), since

\[f(x + \pi) = \frac{\sin 2(x + \pi)}{\cos^4 (x + \pi) + \sin^4 (x + \pi)} = f(x) \]

\[\therefore \int_0^{5\pi/4} \frac{\sin 2x}{\cos^4 x + \sin^4 x} \, dx = \int_0^{\pi/4} \frac{\sin 2x}{\cos^4 x + \sin^4 x} \, dx = \int_0^{\pi/4} \frac{\tan x \sec^2 x}{1 + \tan^4 x} \, dx = \int_0^1 \frac{2t}{1 + t^4} \, dt = \tan^{-1} t \bigg|_0^1 = \frac{\pi}{4} \]
Practice Example

\[-\frac{\sqrt{(a^2+b^2)/2}}{\sqrt{(3a^2+b^2)/4}} \int \frac{x}{\sqrt{(x^2-a^2)(b^2-x^2)}} \, dx = \]

(a) \(\frac{\pi}{2}\)
(b) \(\frac{\pi}{4}\)
(c) \(\frac{\pi}{6}\)
(d) \(\frac{\pi}{12}\)

Solution:

(d) Let \(I = \int \frac{x}{\sqrt{(x^2-a^2)(b^2-x^2)}} \, dx\)

Put \(x^2 = a^2\cos^2 t + b^2\sin^2 t\)

\[\Rightarrow 2x \, dx = [2a^2\cos t(-\sin t) + 2b^2\sin t\cos t] \, dt\]

\[\Rightarrow x \, dx = \frac{1}{2} (b^2 - a^2) \sin 2t \, dt\]

For \(a^2 + b^2 = 2(1 - \sin^2 t) a^2 + 2b^2\sin^2 t\)

\[\Rightarrow a^2 + b^2 = 2(1 - \sin^2 t) a^2 + 2b^2\sin^2 t\]

or, \((a^2 + b^2) = 2a^2 + 2(b^2 - a^2) \sin^2 t\)

\[\Rightarrow \sin^2 t = \frac{1}{2} \Rightarrow \cos 2t = 0 \Rightarrow t = \frac{\pi}{4}\]

For \(x^2 = \frac{3a^2 + b^2}{4} = a^2\cos^2 t + b^2\sin^2 t\)

\[\Rightarrow 3a^2 + b^2 = 4a^2 + 4(b^2 - a^2) \sin^2 t\]

\[\Rightarrow \sin^2 t = \frac{1}{4} \Rightarrow \cos 2t = \frac{1}{2} \Rightarrow t = \frac{\pi}{4}\]

\[
I = \int_{\frac{\pi}{16}}^{\frac{\pi}{4}} \frac{1}{2} \frac{(b^2 - a^2) \sin 2t \, dt}{\sqrt{(b^2 - a^2)\sin^2 t(b^2 - a)\cos^2 t}}
\]

\[
= \int_{\frac{\pi}{16}}^{\frac{\pi}{4}} \frac{1}{\sqrt{(b^2 - a^2)\sin^2 t(b^2 - a)\cos^2 t}} \, dt = (t)_{\frac{\pi}{16}}^{\frac{\pi}{4}} = \frac{\pi}{4} - \frac{\pi}{6} = \frac{\pi}{12}
\]
Practice Example

If \[\int_0^{\pi/2} \frac{x^2 \cos x}{(1 + \sin x)^2} \, dx = A \pi^2 - \pi^3\] then \(A\) is

Ans. 2

Solution

Integrating by parts, we have

\[\int_0^{\pi/2} \frac{x^2 \cos x}{(1 + \sin x)^2} \, dx = \frac{x^2}{1 + \sin x} \bigg|_0^{\pi/2} + 2 \int_0^{\pi/2} \frac{x}{1 + \sin x} \, dx = -\pi^2 + 2I\]

where

\[I = \int_0^{\pi/2} \frac{x}{1 + \sin x} \, dx = \int_0^{\pi/2} \frac{\pi - x}{1 + \sin x} \, dx = \pi \int_0^{\pi/2} \frac{dx}{1 + \sin x} - I\]

\[\Rightarrow 2I = \pi \int_0^{\pi/2} \frac{dx}{1 + \sin x} = 2\pi \int_0^{\pi/2} \frac{dx}{1 + \cos x}\]

\[\Rightarrow I = \pi \int_0^{\pi/2} \frac{dx}{1 + \sin (\pi/2 - x)} = \pi \int_0^{\pi/2} \frac{dx}{1 + \cos x} = \int_0^{\pi/2} \frac{dx}{1 + \cos x}\]

\[= \frac{\pi}{2} \int_0^{\pi/2} \sec^2 (x/2) \, dx = \pi \tan \left(\frac{x}{2}\right) \bigg|_0^{\pi/2} = \pi\]

Hence \[\int_0^{\pi/2} \frac{x^2 \cos x}{(1 + \sin x)^2} \, dx = -\pi^2 + 2\pi\]
Practice Example (CBSE 2010)

Evaluate: \[\int_{\pi/6}^{\pi/3} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} \, dx \] [CBSE 2010, 4 marks]

Soln.:
Let \(\sin x - \cos x = t \) \ldots (i)
Differentiating, \(\cos x - (-\sin x) \, dx = dt \)
Or, \((\cos x + \sin x) \, dx = dt \)
Also,
Squaring (i),
\(\sin^2 x + \cos^2 x - 2 \sin x \cos x = t^2 \)
Or, \(1 - 2 \sin x \cos x = t^2 \)
Or, \(1 - \sin 2x = t^2 \)
Or, \(\sin 2x = 1 - t^2 \)

Therefore, \(I = \int_{\pi/6}^{\pi/3} \frac{\sin x + \cos x}{\sqrt{\sin 2x}} \, dx \)
\[= \int_{1/2}^{\sqrt{3}-1/2} \frac{2}{\sqrt{1 - t^2}} \, dt \]

(Since, when \(x = \pi/6 \), \(t = \frac{1}{2}, \sqrt{3} = \frac{1 + \sqrt{3}}{2} \) and when \(x = \pi/3 \), \(t = \frac{\sqrt{3} - 1}{2} \))

\[= \left[\sin^{-1} \frac{t}{\sqrt{1-t^2}} \right]_{1/2}^{\sqrt{3}-1/2} \]
\[= \sin^{-1} \frac{\sqrt{3}-1}{2} - \sin^{-1} \frac{1-\sqrt{3}}{2} \]
\[= \sin^{-1} \frac{\sqrt{3}-1}{2} + \sin^{-1} \frac{1-\sqrt{3}}{2} \]
\[= 2 \sin^{-1} \frac{\sqrt{3}-1}{2} \]
Ans.
Practice example

Integration \(\sin n + \frac{1}{2} \) by \(\sin x \) by 2

The value of the integral \(\int_0^\pi \frac{\sin (n + \frac{1}{2}) \cdot x}{\sin (x/2)} \, dx \) is \(\pi \) or \(\frac{\pi}{x} \) or \(\frac{\pi}{x^2} \) according as \(a < 1 \) or \(a > 1 \).

Solution

We have,

\[
2 \sin \frac{x}{2} \left(\frac{1}{2} + \cos x + \cos 2x + \ldots + \cos nx \right)
\]

\[
= \sin \frac{x}{2} + 2 \sin \frac{x}{2} \cos x + 2 \sin \frac{x}{2} \cos 2x + \ldots + 2 \sin \frac{x}{2} \cos nx
\]

\[
= \sin \frac{x}{2} + \sin \frac{3x}{2} - \sin \frac{x}{2} + \sin \frac{5x}{2} - \sin \frac{3x}{2} + \ldots
\]

\[
+ \sin \left(n + \frac{1}{2} \right) x - \sin \left(n - \frac{1}{2} \right) x = \sin \left(n + \frac{1}{2} \right) x
\]

\[
= \frac{1}{2} + \cot \frac{x}{2} \cos x + \cos 2x + \ldots + \cos nx = \frac{\sin \left(n + \frac{1}{2} \right) x}{2 \sin (x/2)}
\]

\[
\Rightarrow \int_0^\pi \frac{\sin \left(n + \frac{1}{2} \right) x}{\sin (x/2)} \, dx = \frac{\pi}{n} + \frac{\pi}{n} + \ldots + \frac{\pi}{n} \left(\frac{1}{0} \right) = \pi
\]

Practice example

Example: \(\int_0^\pi \frac{dx}{(1 + a^2) - 2a \cos x} = \frac{\pi}{1 - a} \) or \(\frac{\pi}{a^2 - a^2} \) according as \(a < 1 \) or \(a > 1 \).

The given problem may be re-written in the form

\[
\int_0^\pi \frac{dx}{(1 + a^2) \left(\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} \right) - 2a \left(\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2} \right)}
\]

which can be expressed in the forms

\[
l = \frac{2}{(1 + a^2) \left(\frac{1 - a}{1 + a} \right)} \int \frac{dt}{1 + t^2} \quad \text{or} \quad \frac{2}{(1 + a^2) \left(\frac{a - 1}{a + 1} \right)^2} \int \frac{dt}{1 + t^2}
\]

according as \(a < 1 \) or \(a > 1 \), where \(t = \tan \frac{x}{2} \).

Hence
Hence

\[I = \frac{2}{(1-a^2)} \left[\tan^{-1} \frac{t(1+a)}{1-a} \right]_0^\infty = \frac{\pi}{1-a^2} \text{ if } a < 1 \]

Similarly in the other case the answer shall be \(\frac{\pi}{a^2-1}, a > 1 \)

Practice example

\[\int_0^\infty \sin^{-1}(\sqrt{t}) \, dt + \int_0^\infty \cos^{-1}(\sqrt{t}) \, dt \]

Is equal to

(a) \(\frac{\pi}{4} \)
(b) \(\frac{\pi}{6} \)
(c) 0
(d) none of these

Solution:

(a). We have,

\[I = \int_0^{\sin^{-1}(\sqrt{t})} \sin^{-1}(\sqrt{t}) \, dt + \int_0^{\cos^{-1}(\sqrt{t})} \cos^{-1}(\sqrt{t}) \, dt \]

\[= \left[t \sin^{-1}(\sqrt{t}) \right]_0^{\sin^{-1}(\sqrt{t})} - \int_0^{\sin^{-1}(\sqrt{t})} \left(\frac{\sqrt{1-t}}{2} \right) \, dt \]

\[+ \left[t \cos^{-1}(\sqrt{t}) \right]_0^{\cos^{-1}(\sqrt{t})} - \int_0^{\cos^{-1}(\sqrt{t})} \left(\frac{\sqrt{1-t}}{2} \right) \, dt \]

\[= x \sin^2 x + \int_0^{\sin^{-1}(\sqrt{t})} \frac{\sqrt{1-t}}{2} \, dt + x \cos^2 x + \int_0^{\cos^{-1}(\sqrt{t})} \frac{\sqrt{1-t}}{2} \, dt \]
Putting \(t = \sin^2 \theta \) and \(dt = 2 \sin \theta \cos \theta \, d\theta \), we get,
\[
\int \frac{\sqrt{t}}{\sqrt{1-t}} \, dt = \int \frac{\sin \theta}{\sqrt{1-\sin^2 \theta}} \frac{2 \sin \theta \cos \theta}{\sin^2 \theta} \, d\theta
\]
\[
= \int \sin^2 \theta \, d\theta = \int \frac{1 - \cos 2\theta}{2} \, d\theta
\]
\[
= \frac{\theta}{2} - \frac{\sin 2\theta}{4}
\]

Also, when \(t = \sin^2 x \), \(\theta = x \) and when \(t = \cos^2 x \), \(\theta = \pi/2 - x \)
\[
\therefore \quad I = x + \left[\frac{\theta}{2} - \frac{\sin 2\theta}{4} \right]_{x}
\]
\[
= x + \left(\frac{\pi/2 - x}{2} - \frac{\sin 2x}{4} \right) - \left(\frac{x - \sin 2x}{4} \right)
\]
\[
= x + \frac{\pi}{4} - x = \frac{\pi}{4}
\]

Practice example

\[
I = \int_{0}^{\pi/4} \frac{\sin 2\theta \, d\theta}{\sin^4 \theta + \cos^4 \theta} = \int_{0}^{\pi/4} \frac{2 \sin \theta \cos \theta \, d\theta}{\sin^4 \theta + \cos^4 \theta}
\]
\[
= \int_{0}^{\pi/4} \frac{2 \tan \theta \sec^2 \theta \, d\theta}{1 + \tan^4 \theta}
\]

\[
\text{dividing the numerator and denominator by } \cos^4 \theta
\]

Put \(\tan^2 \theta = t \),
so that \(2 \tan \theta \sec^2 \theta \, d\theta = dt \).

When \(\theta = 0 \),
\[
t = \tan^2 0 = 0
\]
and when \(\theta = \frac{\pi}{4} \),
\[
t = \tan^2 \frac{1}{4} \pi = 1.
\]

\[
\therefore \quad I = \int_0^1 \frac{dt}{1 + t^2} = \left[\tan^{-1} t \right]_0^1
\]
\[
= \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}
\]

Practice example

If \(f(x) \) satisfies the relation
\[
\int_{-2}^{x} f(t) \, dt + xf''(3)
\]
\[
= \int_{1}^{2} x^3 \, dx + f'(1) \int_{2}^{3} x^2 \, dx + f''(2) \int_{2}^{3} x \, dx,
\]
then
(a) \(f(x) = x^3 + 5x^2 + 2x - 6 \)
(b) \(f(x) = x^3 - 5x^2 + 2x + 6 \)
(c) \(f(x) = x^3 + 5x^2 + 2x - 6 \)
(d) \(f(x) = x^3 - 5x^2 + 2x - 6 \)

Solution:

(d). Differentiating the given equation w.r.t. \(x \), we get
\[
f(x) + f'''(3) = x^3 + x^2 f'(1) + x f''(2)
\]
...(1)

Differentiating successively w.r.t. \(x \), we get
\[
f'(x) = 3x^2 + 2xf'(1) + f''(2)
\]
...(2)

\[
f''(x) = 6x + 2f'(1)
\]
...(3)

\[
f'''(x) = 6\n\]
...(4)

Putting \(x = 1, 2 \) and \(3 \) in equations (2), (3) and (4) respectively, we get
\[
f'(1) = 3 + 2f'(1) + f''(2), \quad f''(2) = 12 + 2f'(1)
\]
and,
\[
f'''(3) = 6\n\]

Solving, we have
\[
f'(1) = -5, f''(2) = 2, f'''(3) = 6\n\]

Putting the values in equation (1), we have
\[
f(x) = x^3 - 5x^2 + 2x - 6.\]
Practice example

If \(I_1 = \int_{1/e}^{e} \frac{t}{1+t^2} \, dt \) and \(I_2 = \int_{1/e}^{e} \frac{\cosh t}{(1+t^2)} \, dt \) then the value of \(I_1 + I_2 \) is

(a) \(\frac{1}{2} \)
(b) \(1 \)
(c) \(e/2 \)
(d) \((1/2)(e + 1/e) \)

Ans. (b)

Solution

Putting \(t = 1/u \) in \(I_2 \) we have

\[
I_2 = -\int_{e}^{1/e} \frac{u}{1+u^2} \, du = -\int_{1/e}^{e} \frac{u}{1+u^2} \, du + \int_{1/e}^{e} \frac{u}{1+u^2} \, du
\]

\[
= I_1 + \frac{1}{2} \int_{1/e}^{e} \frac{2u}{1+u^2} \, du
\]

So

\[
I_1 + I_2 = \frac{1}{2} \log(u^2 + 1) \bigg|_{1/e}^{e} = \frac{1}{2} \left[\log(e^2 + 1) - \log\left(\frac{e^2 + 1}{e^2}\right) \right]
\]

\[
= \frac{1}{2} \times 2 = 1.
\]
Practice example

\[
\lim_{x \to 0} \frac{\int_0^x e^{\sin^2 t} \, dt - \int_0^y e^{\sin^2 t} \, dt}{x}, \text{ where } y \text{ is a constant independent of } x, \text{ is equal to}
\]
(a) \(e^{\sin^2 y} \)
(b) \(2 e^{\sin^2 y} \)
(c) \(-e^{\sin^2 y} \)
(d) none of these

Solution:

\[
\begin{align*}
(a). \quad \lim_{x \to 0} & \frac{\int_0^x e^{\sin^2 t} \, dt - \int_0^y e^{\sin^2 t} \, dt}{x} \\
& = \lim_{x \to 0} \frac{\int_0^y e^{\sin^2 t} \, dt + \int_y^x e^{\sin^2 t} \, dt}{x} \\
& = \lim_{x \to 0} \frac{\int_y^x e^{\sin^2 t} \, dt}{x} \\
& = \lim_{x \to 0} \frac{e^{\sin^2(x+y)} \frac{d}{dx} (x+y) - e^{\sin^2 y} \frac{dy}{dx}}{1} \\
& = \lim_{x \to 0} \frac{e^{\sin^2(x+y)} \cdot 1 - e^{\sin^2 y} \cdot 0}{1} = e^{\sin^2 y}
\end{align*}
\]
Practice example

Evaluate \[\int_0^a \left(a^2 + x^2 \right)^{\frac{3}{2}} \, dx. \]

Solution:

\[I = \int_0^a \left(a^2 + x^2 \right)^{\frac{3}{2}} \, dx \]

Put \(x = a \tan \theta \)

\[\therefore \quad dx = a \sec^2 \theta \, d\theta \]

\[\begin{align*}
 I &= a^3 \int_0^{\frac{\pi}{2}} \left(a^2 + a^2 \tan^2 \theta \right)^{\frac{3}{2}} \cdot a \sec^2 \theta \, d\theta \\
 &= a^3 \int_0^{\frac{\pi}{2}} \frac{1}{a^3} \left(\sec^4 \theta \tan \theta \right)^{\frac{3}{2}} + \frac{5}{6} \int_0^{\frac{\pi}{2}} \sec^3 \theta \, d\theta \\
 &= a^3 \left[\frac{2\sqrt{2}}{3} + \frac{5}{6} \int_0^{\frac{\pi}{2}} \sec^3 \theta \, d\theta \right] \\
 &= a^3 \left[\frac{2\sqrt{2}}{3} + \frac{5}{6} \left(\frac{\sec \theta \tan \theta}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \int_0^{\frac{\pi}{2}} \sec \theta \, d\theta \right] \\
 &= a^3 \left[\frac{2\sqrt{2}}{3} + \frac{5\sqrt{2}}{12} + \frac{5}{8} \left(\frac{\sec \theta \tan \theta}{2} \right)^{\frac{1}{2}} + \frac{1}{2} \log (\sec \theta + \tan \theta) \right] \\
 &= a^3 \left[\frac{2\sqrt{2}}{3} + \frac{5\sqrt{2}}{12} + \frac{5}{8} \log (\sqrt{2} + 1) \right]
\]
\[
\begin{align*}
&= a^6 \left[\frac{32\sqrt{2}}{48} + \frac{20\sqrt{2}}{48} + \frac{15\sqrt{2}}{48} \right] + \frac{5}{16} \log \left(\sqrt{2} + 1\right) \\
&= a^6 \left[\frac{67\sqrt{2}}{48} \right] + \frac{5}{16} \log \left(\sqrt{2} + 1\right) \\
&= \frac{a^6}{48} \left[67\sqrt{2} + 15 \log \left(\sqrt{2} + 1\right) \right]
\end{align*}
\]

Practice example

\[
\int_0^5 \frac{\tan^{-1}(x-[x])}{1 + (x-[x])^2} \, dx
\]

where \([\cdot]\) denotes the greatest integer function, is equal to

(a) \(\frac{\pi^2}{32}\)
(b) \(\frac{3\pi^2}{32}\)
(c) \(\frac{5\pi^2}{32}\)
(d) none of these

Solution :

\[
\begin{align*}
(c). \quad & \int_0^5 \frac{\tan^{-1}(x-[x])}{1 + (x-[x])^2} \, dx \\
&= \int_0^5 \frac{\tan^{-1}(x-[x])}{1 + (x-[x])^2} \, dx \\
&= \int_0^1 \frac{\tan^{-1} x}{1 + x^2} \, dx + \int_1^2 \frac{\tan^{-1} (x-1)}{1 + (x-1)^2} \, dx + \ldots
\end{align*}
\]
\[
\frac{1}{4} \int \frac{\tan^{-1}(x-4)}{1+(x-4)^2} \, dx + \frac{5}{4} \frac{\tan^{-1}(x)}{1+x^2} \, dx
\]

\[
= \frac{1}{4} \int \tan^{-1}(x-4) \, dx + \frac{1}{4} \int \tan^{-1}(t) \, dt + \frac{5}{4} \int \tan^{-1}(t) \, dt
\]

\[
(Putting \ x-1 = t) \quad (Putting \ x-4 = r)
\]

\[
= \frac{5}{4} \int \tan^{-1}(x-4) \, dx = \frac{5}{4} \int u \, du \quad [\text{Putting} \ \tan^{-1} x = u]
\]

\[
= \frac{5}{4} \left(\frac{u^2}{2} \right) \bigg|_0^\frac{\pi}{2} = \frac{5\pi^2}{32}
\]

Practice example

Let \(I_1 = \int x f(x(3-x)) \, dx \)

\[2-\tan^2 z\]

and, \(I_2 = \int f(x(3-x)) \, dx\), \(\sec^2 z \)

where \(f \) is a continuous function and \(z \) is any real number, then \(I_1/I_2 = \)

(a) \(\frac{3}{2} \) \hspace{1cm} (b) \(\frac{1}{2} \)

(c) 1 \hspace{1cm} (d) none of these
Solution

(a). We have, \(I_1 = \int \frac{2 - \tan^2\theta}{\sec^2\theta} \, dx \)

\[
2 - \tan^2\theta = \int (3 - x) f((3 - x) (3 - (3 - x))) \, dx
\]

\[
\left[: \int f(x) \, dx = \int f(a + b - x) \, dx \right]
\]

\[
2 - \tan^2\theta = \int (3 - x) f(x(3 - x)) \, dx
\]

\[
2 - \tan^2\theta = 3 \int f(x(3 - x)) \, dx - \int x f(x(3 - x)) \, dx
\]

\[
= 3 I_2 - I_1
\]

\[
\therefore \quad 2 I_1 = 3 I_2 \quad \text{and so} \quad I_1/I_2 = \frac{3}{2}
\]

Practice example

Evaluate \(\int_0^\infty \tan^{-1} \theta \, d\theta \)

\[
I = \int_0^\infty \tan^{-1} \theta \, d\theta
\]
\[
\left(\frac{\tan^4 \theta}{4} \right)_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} \tan^3 \theta \, d\theta \\
= \frac{1}{4} - \int_0^{\frac{\pi}{4}} \tan^3 \theta \, d\theta \\
= \frac{1}{4} \left[\left(\frac{\tan^2 \theta}{2} \right)_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} \tan \theta \, d\theta \right] \\
= \frac{1}{4} \left[\frac{1}{2} - \left(\log \sec \theta \right)_0^{\frac{\pi}{4}} \right] \\
= \frac{1}{4} \left[\frac{1}{2} - \log \sqrt{2} \right] \\
= -\frac{1}{4} + \log \sqrt{2} \\
= -\frac{1}{4} + \frac{1}{2} \log 2
\]

Practicing Example

If \(\varphi (n) = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \), show that \(\varphi (n) + \varphi (n - 2) = \frac{1}{n-1} \) and deduce the value of \(\varphi (5) \).
Solution:

\[\phi(n) = \int_0^{\frac{\pi}{4}} \tan^n x \, dx \]
\[= \left(\tan^{n-1} x \right)^{\frac{1}{n-1}} \left| _0^{\frac{\pi}{4}} \right. - \int_0^{\frac{\pi}{4}} \tan^{n-2} x \, dx \]
\[= \frac{1}{n-1} \phi_{n-2} \]

\[\Rightarrow \phi_n + \phi_{n-2} = \frac{1}{n-1} \quad \text{Proved} \]

Now \[\phi(5) = \frac{1}{4} - \phi_3 \]
\[= \frac{1}{4} \left[\frac{1}{2} - \phi_1 \right] \]
\[= -\frac{1}{4} + \phi_1 \]
\[= -\frac{1}{4} + \int_0^{\frac{\pi}{4}} \tan x \, dx \]

Practice Example

Prove that

\[\int_0^{\frac{\pi}{2}} \cos^m x \sin mx \, dx = \frac{1}{2^{m+1}} \left\{ 2 \cdot \frac{2^2}{2} + \frac{2^3}{3} + \ldots + \frac{2^m}{m} \right\} \]

Solution:

We know that

\[\int_0^{\frac{\pi}{2}} \cos^m x \sin mx \, dx \]
\[= \left[-\cos^m x \sin mx \frac{1}{m+m} \right]_0^{\frac{\pi}{2}} + \frac{m}{m+m} \int_0^{\frac{\pi}{2}} \cos^{m-1} x \sin (m-1) x \, dx \]

\[\Rightarrow I_{m,m} = \frac{1}{2m} + \frac{1}{2} I_{m-1,m-1} \]

Put \(m - 1 \) for \(m \),

\[I_{m-1,m-1} = \frac{1}{2 (m-1)} + \frac{1}{2} I_{m-2,m-2} \]
\[I_{m,n} = \frac{1}{2m} + \frac{1}{2} \left[\frac{1}{2^{(m-1)}} + \frac{1}{2} I_{m-1,n-2} \right] \]
\[= \frac{1}{2m} + \frac{1}{2^2(m-1)} + \frac{1}{2} I_{m-2,n-2} \]
\[= \frac{1}{2m} + \frac{1}{2^2(m-1)} + \frac{1}{2^3(m-2)} + \frac{1}{2^3} I_{m-3,n-3} \]
\[+ \ldots \]
\[= \frac{1}{2m} + \frac{1}{2^2(m-1)} + \frac{1}{2^3(m-2)} + \ldots \]
\[+ \frac{1}{2^n} I_{n-n, n-n} \]

\[= \frac{1}{2m} + \frac{1}{2^2(m-1)} + \frac{1}{2^3(m-2)} + \ldots \]
\[+ \frac{1}{2^n} I_{n,n} \]
\[= \frac{1}{2m} + \frac{1}{2^2(m-1)} + \frac{1}{2^3(m-2)} + \ldots \]
\[+ \frac{1}{2^n} + \frac{1}{2^m} \int_0^{\frac{\pi}{2}} \frac{\sin x}{x} \, dx \]

Now \(\int_0^{\pi/2} \frac{\sin x}{x} \, dx = [c]_0^{\pi/2} = c - c = 0 \)

\[\therefore \quad I_{m,n} = \frac{1}{2m} + \frac{1}{2^2(m-1)} + \frac{1}{2^3(m-2)} + \ldots + \frac{1}{2^n} \cdot 1 \]

Writing the series in the reverse order
\[= \frac{1}{2^n} + \frac{1}{2^{n-1}} + \frac{1}{2^{n-2}} + \ldots + \frac{1}{2m} \]
\[= \frac{1}{2^{n+1}} \left[\frac{2^{n+1}}{2^1} + \frac{2^{n-1}}{2^2} + \frac{2^{n-2}}{2^3} + \ldots + \frac{2^m}{2^n} \right] \]
Practice Example

Prove that \(\int_0^{\frac{\pi}{2}} \cos^{n-2} x \sin nx \, dx = \frac{1}{n-1} \); \(n \) being an integer greater than unity.

Solution:

\[
I = \int_0^{\frac{\pi}{2}} \cos^{n-2} x \sin nx \, dx \\
= \int_0^{\frac{\pi}{2}} \cos^{n-2} x \sin \left((n-1) x + x \right) \, dx \\
= \int_0^{\frac{\pi}{2}} \cos^{n-2} x \left(\sin (n-1) x \cos x \right. \\
+ \cos (n-1) x \sin x \right) \, dx \\
= \int_0^{\frac{\pi}{2}} \cos^{n-1} x \sin (n-1) x \, dx \\
I \\
+ \int_0^{\frac{\pi}{2}} \cos^{n-2} x \cos (n-1) x \sin x \, dx
\]

Integrating the first integral only by parts

\[
= \left\{ \cos^{n-1} x - \frac{\cos (n-1) x}{n-1} \right\} \left|_0^{\frac{\pi}{2}} \right. \\
- \int_0^{\frac{\pi}{2}} (n-1) \cos^{n-2} x (- \sin x) \left(- \frac{\cos (n-1) x}{n-1} \right) \, dx \\
+ \int_0^{\frac{\pi}{2}} \cos^{n-2} x \cos (n-1) x \sin x \, dx
\]

\[
= \frac{1}{n-1} - \int_0^{\frac{\pi}{2}} \cos^{n-2} x \cos (n-1) x \sin x \, dx \\
+ \int_0^{\frac{\pi}{2}} \cos^{n-2} x \cos (n-1) x \sin x \, dx
\]

\[
= \frac{1}{n-1}
\]
Practice Example

If \(I_{1,n} = \int_{0}^{\pi/2} \frac{\sin(2n-1)x}{\sin x} \, dx \) and \(I_{2,n} = \int_{0}^{\pi/2} \frac{\sin^2 nx}{\sin^2 x} \, dx \)

\(n \in \mathbb{N} \), then

(a) \(I_{2,n+1} - I_{2,n} = I_{1,n} \)
(b) \(I_{2,n+1} - I_{2,n} = I_{1,n+1} \)
(c) \(I_{2,n+1} + I_{1,n} = I_{2,n} \)
(d) \(I_{2,n+1} + I_{1,n+1} = I_{2,n} \)

Solution

\(I_{2,n} - I_{2,n-1} = \int_{0}^{\pi/2} \frac{(\sin^2 nx - \sin^2 (n-1)x)}{\sin^2 x} \, dx \)

\(= \int_{0}^{\pi/2} \frac{\sin (2n-1)x \sin x}{\sin^2 x} \, dx \)

\(= \int_{0}^{\pi/2} \frac{\sin (2n-1)x}{\sin x} \, dx = I_{1,n} \)

\(\therefore \, I_{2,n+1} - I_{2,n} = I_{1,n+1} \)
Reduction forms

Let \(I_n = \int \sin^n x \, dx \) or \(I_n = \int \sin^{n-1} x \sin x \, dx \).

Integrating by parts regarding \(\sin x \) as the 2nd function, we have
\[
I_n = \sin^{n-1} x \cdot \cos x \cdot (n-1) \int \sin^{n-2} x \cos x \cdot (-\cos x) \, dx
\]
\[
= -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x \cos^2 x \, dx
\]
\[
= -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x \, dx - (n-1) \int \sin^n x \, dx
\]
\[
= -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x \, dx - (n-1) I_n.
\]
Transposing the last term to the left, we have
\[
I_n (1 + n - 1) = -\sin^{n-1} x \cdot \cos x + (n-1) I_{n-2},
\]
\[
\therefore I_{n-2} = \int \sin^{n-2} x \, dx.
\]

or \(nI_n = -\sin^{n-1} x \cdot \cos x + (n-1) I_{n-2} \)

or \(I_n = -\frac{\sin^{n-1} x \cdot \cos x}{n} + \frac{n-1}{n} I_{n-2} \).

Let \(I_n = \int \cos^n x \, dx \) or \(I_n = \int \cos^{n-1} x \cdot \cos x \, dx \).

Integrating by parts regarding \(\cos x \) as the 2nd function, we have
\[
I_n = \cos^{n-1} x \cdot \sin x \cdot (n-1) \int \cos^{n-2} x \cdot (\sin x) \cdot \sin x \, dx
\]
\[
= \cos^{n-1} x \cdot \sin x + (n+1) \int \cos^{n-2} x \cdot \sin^2 x \, dx
\]
\[
= \cos^{n-1} x \cdot \sin x + (n-1) \int \cos^{n-2} x \cdot (1 - \cos^2 x) \, dx
\]
\[
= \cos^{n-1} x \cdot \sin x + (n-1) \int \cos^{n-2} x \, dx - (n-1) \int \cos^n x \, dx
\]
\[
= \cos^{n-1} x \cdot \sin x + (n-1) I_{n-2} - (n-1) I_n.
\]
Transposing the last term to the left, we have
\[
I_n (1 + n - 1) = \cos^{n-1} x \cdot \sin x + (n-1) I_{n-2},
\]
or \(nI_n = \cos^{n-1} x \cdot \sin x + (n-1) I_{n-2} \)

or \(I_n = \frac{\cos^{n-1} x \cdot \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx \).
We have \[\int \tan^n x \, dx = \int \tan^{n-2} x \cdot \tan^2 x \, dx \]
\[= \int \tan^{n-2} x \cdot (\sec^2 x - 1) \, dx \]
\[= \int \tan^{n-2} x \cdot \sec^2 x \, dx - \int \tan^{n-2} x \, dx \]
\[= \frac{(\tan x)^{n-2+1}}{n-2+1} - \int \tan^{n-2} x \, dx \]
or \[\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \]

We have \[\int \cot^n x \, dx = \int \cot^{n-2} x \cdot \cot^2 x \, dx \]
\[= \int \cot^{n-2} x \cdot (\cosec^2 x - 1) \, dx \]
\[= \int \cot^{n-2} x \cdot \cosec^2 x \, dx - \int \cot^{n-2} x \, dx \]
\[= -\frac{(\cot x)^{n-1}}{n-1} \int \cot^{n-2} x \, dx \]
or \[\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \]

We have \[I_n = \int \sec^n x \, dx = \int \sec^{n-2} x \cdot \sec^2 x \, dx \]
Integrating by parts regarding \(\sec^2 x \) as the 2nd function, we have
\[I_n = \sec^{n-2} x \cdot \tan x - \int (n-2) \sec^{n-3} x \cdot \sec x \cdot \tan^2 x \, dx \]
\[= \sec^{n-2} x \cdot \tan x - (n-2) \int \sec^{n-2} x \cdot (\sec^2 x - 1) \, dx \]
\[= \sec^{n-2} x \cdot \tan x - (n-2) \int \sec^n x \, dx + (n+2) \int \sec^{n-2} x \, dx. \]
Transposing the term containing \(\int \sec^n x \, dx \) to the left, we have
\[(n-2+1) \int \sec^n x \, dx = \sec^{n-2} x \cdot \tan x + (n-2) \int \sec^{n-2} x \, dx \]
\[
\int \sec^n x \, dx = \sec^{n-2} x \tan x - (n-2) \int \sec^{n-2} x \, dx \\
= \tan x \sec^{n-2} x - (n-2) \int \sec^{n-2} x \sec^2 x \, dx \\
= \tan x \sec^{n-2} x - (n-2) \left(\sec^x x - \int \sec^{n-2} x \, dx \right) \\
[1+(n-2)] \int \sec^n x \, dx = \tan x \sec^{n-2} x + (n-2) \int \sec^{n-2} x \, dx \\
\int \sec^n x \, dx = \frac{\tan x \sec^{n-2} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx
\]

\[
\int \csc^n x \, dx = \int \csc^{n-2} x \, dx \\
\text{Integrating by parts,}
\]

\[
\int \csc^n x \, dx = \csc^{n-2} x (\cot x) - (n-2) \int \csc^{n-2} x (\csc x \cot x) (\cot x) \, dx \\
= - \cot x \csc^{n-2} x - (n-2) \left(\int \csc^{n-2} x \csc^2 x \, dx - \int \csc^{n-2} x \, dx \right) \\
[1+(n-2)] \int \csc^n x \, dx = - \cot x \csc^{n-2} x + (n-2) \int \csc^{n-2} x \, dx \\
\int \csc^n x \, dx = \frac{-\cot x \csc^{n-2} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx
\]

To recall standard integrals

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(\int f(x) , dx)</th>
<th>(f(x))</th>
<th>(\int f(x) , dx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^n)</td>
<td>(\frac{x^{n+1}}{n+1}) ((n \neq -1))</td>
<td>((g(x))^n)</td>
<td>(\frac{(g(x))^{n+1}}{n+1}) ((n \neq -1))</td>
</tr>
<tr>
<td>(\frac{1}{x})</td>
<td>(\ln</td>
<td>x</td>
<td>)</td>
</tr>
<tr>
<td>(e^x)</td>
<td>(e^x)</td>
<td>(a^x)</td>
<td>(\frac{a^x}{\ln a}) ((a > 0))</td>
</tr>
<tr>
<td>(\sin x)</td>
<td>(-\cos x)</td>
<td>(\sinh x)</td>
<td>(\cosh x)</td>
</tr>
<tr>
<td>(\cos x)</td>
<td>(\sin x)</td>
<td>(\cosh x)</td>
<td>(\sinh x)</td>
</tr>
<tr>
<td>(\tan x)</td>
<td>(-\ln</td>
<td>\cos x</td>
<td>)</td>
</tr>
<tr>
<td>(\csc x)</td>
<td>(\ln</td>
<td>\tan \frac{x}{2}</td>
<td>)</td>
</tr>
<tr>
<td>(\sec x)</td>
<td>(\ln</td>
<td>\sec x + \tan x</td>
<td>)</td>
</tr>
<tr>
<td>(\sec^2 x)</td>
<td>(\tan x)</td>
<td>(\sec^2 x)</td>
<td>(\tanh x)</td>
</tr>
<tr>
<td>(\cot x)</td>
<td>(\ln</td>
<td>\sin x</td>
<td>)</td>
</tr>
<tr>
<td>(\sin^2 x)</td>
<td>(\frac{x}{2} - \frac{\sin 2x}{4})</td>
<td>(\sinh^2 x)</td>
<td>(\frac{\sinh 2x}{4} - \frac{x}{2})</td>
</tr>
<tr>
<td>(\cos^2 x)</td>
<td>(\frac{x}{2} + \frac{\cos 2x}{4})</td>
<td>(\cosh^2 x)</td>
<td>(\frac{\sinh 2x}{4} + \frac{x}{2})</td>
</tr>
</tbody>
</table>
Some series Expansions -

\[\frac{\pi}{2} = \left(\frac{2}{1} \right) \left(\frac{2}{3} \right) \left(\frac{4}{3} \right) \left(\frac{4}{5} \right) \left(\frac{6}{5} \right) \left(\frac{6}{7} \right) \left(\frac{8}{7} \right) \left(\frac{8}{9} \right) \ldots \]

\[\pi = \frac{4}{1} - \frac{4}{3} + \frac{4}{5} - \frac{4}{7} + \frac{4}{9} - \frac{4}{11} + \frac{4}{13} - \ldots \]

\[\frac{\pi}{4} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \ldots \]

\[\pi = \sqrt{12} \left(1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \ldots \right) \]

\[\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \ldots = \sum_{n=1}^{\infty} \frac{1}{n^2} \]

\[\int_0^{\pi/2} \log \sin x \, dx = -\frac{\pi}{2} \log 2 = \frac{\pi}{2} \log \frac{1}{2} \]
Solve a series problem

If \(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots \) up to \(\infty \) is

\[
\frac{\pi^2}{6} \quad \text{(a) } \frac{\pi^2}{4} \quad \text{(b) } \frac{\pi^2}{6} \quad \text{(c) } \frac{\pi^2}{8} \quad \text{(d) } \frac{\pi^2}{12}
\]

\(\text{Ans. (c)} \)

Solution We have

\[
\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} + \cdots \) up to \(\infty \)

\[
= \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots \text{upto } \infty
\]

\[
= \frac{1}{2^2} \left[1 + \frac{1}{1^2} + \frac{1}{3^2} + \cdots \right]
\]

\[
= \frac{\pi^2}{6} - \frac{1}{4} \left(\frac{\pi^2}{6} \right) = \frac{\pi^2}{8}
\]

\[
1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \frac{1}{6^2} + \cdots \) \infty = \frac{\pi^2}{12}
\]

\[
\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \cdots \) \infty = \frac{\pi^2}{24}
\]

\[
\sin \sqrt{x} = 1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \cdots
\]

\[
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}
\]

\[
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k + 1)!}
\]

\[
cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}
\]

\[
\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k + 1)!}
\]

\[
\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \quad (-1 \leq x < 1)
\]
\[
\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \ldots
\]
\[
\frac{2^{2n}(2^{2n-1})B_{2n}x^{2n-1}}{(2n)!} + \ldots \quad |x| < \frac{\pi}{2}
\]

\[
\sec x = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \frac{61x^6}{720} + \ldots + \frac{B_{2n}x^{2n}}{(2n)!} + \ldots \quad |x| < \frac{\pi}{2}
\]

\[
\csc x = \frac{1}{x} + \frac{x}{6} + \frac{7x^3}{360} + \frac{31x^5}{15120} + \ldots + \frac{2(2^{2n-1}B_{2n}x^{2n-1})}{(2n)!} + \ldots \quad 0 < |x| < \pi
\]

\[
\cot x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \ldots - \frac{2^{2n}B_{2n}x^{2n-1}}{(2n)!} + \ldots \quad 0 < |x| < \pi
\]

\[
\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \ldots
\]

\[
\sec x = 1 + \frac{x^2}{2} + \frac{5x^4}{4} + \ldots
\]

\[
\log (\cos x) = -\frac{x^2}{2} - \frac{2x^4}{4} - \ldots
\]

\[
\log (1 + \sin x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{12} + \ldots
\]
\[
\sin^{-1} x = x + \frac{1}{2} \cdot \frac{x^3}{3!} + \frac{1 \cdot 3 \cdot x^5}{5!} + \frac{1 \cdot 3 \cdot 5 \cdot x^7}{7!} + \ldots \quad |x| < 1
\]

\[
\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x
\]

\[
= \frac{\pi}{2} \left(x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1 \cdot 3 \cdot x^5}{5} + \frac{1 \cdot 3 \cdot 5 \cdot x^7}{7} + \ldots \right) \quad |x| < 1
\]

\[
\tan^{-1} x = \left\{
\begin{array}{l}
\frac{\pi}{2} - \frac{1}{3} \cdot \frac{x^3}{x^3} - \frac{1}{5} \cdot \frac{x^5}{x^5} + \ldots \quad \text{if } x > 1
\\
x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \ldots \quad \text{if } |x| < 1
\end{array}
\right.
\]

\[
\sec^{-1} x = \cos^{-1} \left(\frac{1}{x} \right)
\]

\[
= \frac{\pi}{2} \left(\frac{1}{x} + \frac{1}{2 \cdot 3} \cdot \frac{1 \cdot 3 \cdot x^5}{x^3} + \frac{1 \cdot 3 \cdot 5 \cdot x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \ldots \right) \quad |x| > 1
\]

\[
\csc^{-1} x = \sin^{-1} \left(\frac{1}{x} \right)
\]

\[
= \frac{1}{x} + \frac{1}{2 \cdot 3} \cdot \frac{1 \cdot 3 \cdot x^5}{x^3} + \frac{1 \cdot 3 \cdot 5 \cdot x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \ldots \quad |x| > 1
\]

\[
\cot^{-1} x = \frac{\pi}{2} - \tan^{-1} x
\]

\[
= \left\{
\begin{array}{l}
\frac{\pi}{2} \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \ldots \right) \quad |x| < 1
\\
p \cdot x + \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{5} \cdot \frac{1}{5} + \ldots \quad \text{if } p = 0 \text{ if } x > 1
\\
p \cdot x + \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{5} \cdot \frac{1}{5} + \ldots \quad \text{if } p = 1 \text{ if } x \\
\end{array}
\right.
\]
\[e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots = \sum_{n=0}^{\infty} \frac{x^n}{n!}\]

\[\ln x = 2 \left(\frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1}\right)^3 + \frac{1}{5} \left(\frac{x-1}{x+1}\right)^5 + \ldots\right)\]
\[= 2 \sum_{n=1}^{\infty} \frac{1}{2n-1} \left(\frac{x-1}{x+1}\right)^{2n-1} \quad (x > 0)\]

\[\ln x = \frac{x-1}{x} + \frac{1}{2} \left(\frac{x-1}{x}\right)^2 + \frac{1}{3} \left(\frac{x-1}{x}\right)^3 + \ldots\]
\[= \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{x-1}{x}\right)^n \quad (x > \frac{1}{2})\]

\[\ln x = (x-1) - \frac{1}{2} (x-1)^2 + \frac{1}{3} (x-1)^3 - \ldots\]
\[= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} (x-1)^n \quad (0 < x \leq 2)\]

\[\ln (1+x) = x - \frac{1}{2} x^2 + \frac{1}{3} x^3 - \ldots\]
\[= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} x^n \quad (|x| < 1)\]

\[\log_e (1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \ldots \ln (-1 \leq x < 1)\]

\[\log_e (1+x) - \log_e (1-x) = \log_e \left(\frac{1+x}{1-x}\right)\]

\[\log_e \left(\frac{1+x}{1-x}\right) = 2 \left(x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots \ln (-1 < x < 1)\right)\]

\[\log_e \left(\frac{1+x}{1-x}\right) = 2 \left[\frac{1}{2n+1} + \frac{1}{3(2n+1)^3} + \frac{1}{5(2n+1)^5} + \ldots \ln (-1 < x < 1)\right]\]

\[\log_e (1+x) + \log_e (1-x) = \log_e (1-x^2) = -2 \left(\frac{x^2}{2} + \frac{x^4}{4} + \ldots \ln (-1 < x < 1)\right)\]

\[\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \ldots = \frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + \ldots\]
Important Results

(i) \(\int_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} \, dx = \frac{\pi}{4} = \int_0^{\pi/2} \frac{\cos^n x}{\sin^n x + \cos^n x} \, dx \)

(ii) \(\int_0^{\pi/2} \frac{\tan^n x}{1 + \tan^n x} \, dx = \frac{\pi}{4} = \int_0^{\pi/2} \frac{\cot^n x}{1 + \cot^n x} \, dx \)

(iii) \(\int_0^{\pi/2} \frac{dx}{\sec^n x} = \int_0^{\pi/2} \frac{\cos^n x}{\sin^n x + \cos^n x} \, dx = \frac{\pi}{4} = \int_0^{\pi/2} \frac{\cosec^n x}{\sec^n x + \cosec^n x} \, dx \) where, \(n \in \mathbb{R} \)

(ii) \(\int_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} \, dx = \int_0^{\pi/2} \frac{\cos^n x}{\sin^n x + \cos^n x} \, dx = \frac{\pi}{4} \)

(iii) \(\int_0^{\pi/2} \log \sin x \, dx = \int_0^{\pi/2} \log \cos x \, dx = -\frac{\pi}{2} \log 2 \)

(iv) \(\int_0^{\pi/2} \frac{\sin x}{a^2 + b^2} \)

(c) \(\int_0^{\pi/2} \log \cot x \, dx = 0 \)

(c) \(\int_0^{\pi/2} \log \cosec x \, dx = \frac{\pi}{2} \log 2 \)

(iv) \(\int_0^{\pi/2} \cos bx \, dx = \frac{a}{a^2 + b^2} \)

(c) \(\int_0^{\pi/2} e^{-ax} \sin bx \, dx = \frac{b}{a^2 + b^2} \)

(c) \(\int_0^{\pi/2} e^{-ax} \cos bx \, dx = \frac{a}{a^2 + b^2} \)

(c) \(\int_0^{\pi/2} e^{-ax} x^n \, dx = \frac{n!}{a^n + 1} \)
\[
\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left(x + \sqrt{x^2 - a^2} \right) + C
\]
\[
\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln \left(x + \sqrt{x^2 + a^2} \right) + C
\]
\[
\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left(\frac{x-a}{x+a} \right) + C
\]
\[
\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left(\frac{a+x}{a-x} \right) + C
\]
\[
\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a} \right) + C
\]
\[
\int \sqrt{a^2 + x^2} \, dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \sinh^{-1} \left(\frac{x}{a} \right) + C
\]
\[
\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cosh^{-1} \left(\frac{x}{a} \right) + C
\]